
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Mutual Exclusion State Invariants
in Classical Planning

Doctoral Thesis

Daniel Fǐser

Ph.D. programme: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

Supervisor: Ing. Antońın Komenda, Ph.D.
Co-Supervisor: RNDr. Lukáš Chrpa, Ph.D.

Prague, May 2020

ii

Acknowledgments

I would like to thank Jan Faigl for helping me with my return to the university after my
short intermission in industry, and I would like to thank Michal Pěchouček for welcoming
me in Department of Computer Science and AI Center. I want to thank my advisor
Antońın Komenda for introducing me to the beautiful area of classical planning and for
all the invaluable discussions we had during my studies. Without his support and help,
this work would not be possible. I thank my colleagues and co-authors Michal Štolba,
Álvaro Torralba, Alexander Shleyfman, Rostislav Horč́ık, and Lukáš Chrpa for helping
me better understand the intricacies of planning. I thank my colleague and friend Vojtěch
Vonásek for always reminding me that scientific research suppose to be, above all, joyful
endeavour. I thank my friend Petr Pošvic for his never ending support and his willingness
to pretend that my occasional rambling on about planning problems is interesting. Lastly,
I want to thank my friends Pepa, Monča, Danuška, Mikula, Pupa, Ivka, and Ivanka for
their support and love, and for making my life happier.

iii

iv

Abstract

The solution to a classical planning problem is a sequence of operators leading from
the initial state to one of the goal states. Classical planning problems are described
in a domain-independent manner, so automatic extraction of structural information can
provide useful guidance for planners. In this work, we focus on the structural information
in a form of mutual exclusion state invariants, namely mutexes and mutex groups. Mutex
describes a set of facts that cannot co-occur in the same reachable state, and mutex group
describes a set of facts out of which at most one can be part of any reachable state.

In this thesis, we discuss basic properties of mutexes and mutex groups and we show
that the relation between them can be described in terms of graph cliques. We analyze the
complexity of inference of mutex groups and we prove that the inference of the maximum
sized mutex group is as hard as determining the existence of a plan (PSPACE-Complete).

Based on these findings, we introduce a new subclass of mutex groups that we call fact-
alternating mutex groups (fam-groups). We provide an in-depth analysis of the structure
of fam-groups and we show that fam-groups can be used for detection of unreachable
operators and operators that can produce only dead-end state. We prove that the inference
of the maximum sized fam-group is NP-Complete and we introduce an inference algorithm
based on repeated solving of integer linear program that is complete with respect to all
maximal fam-groups. Furthermore, we propose an algorithm for removing operators and
facts that cannot be part of any plan.

We formalize the inference of mutex groups in the lifted (PDDL) representation of
planning problems and we prove that the most commonly used translator from the Fast
Downward (FD) planning system actually infers fam-groups. We show that the algorithm
for removing operators and facts using fam-groups can be utilized on the lifted level
during the translation from PDDL to the ground representation (STRIPS). Moreover, we
propose an improved inference algorithm for lifted fam-groups that produces a richer set
of fam-groups than the FD translator.

As another example of applicability of mutual exclusion state invariants, we propose
an improvement of well-known potential heuristics. We show that the mutex-based dis-
ambiguations of the goal and preconditions of operators leads to a less constrained for-
mulation of potential heuristics yielding higher admissible estimates. Also, we propose
several new optimization functions for potential heuristics where we use mutexes to more
accurately estimate the number of reachable states containing certain sets of facts.

In the last part of the thesis, we introduce the notion of operator mutex as a set of
operators that cannot co-occur in the same (strongly) optimal plan. We propose four
different methods for inference of operator mutexes and we show how operator mutexes
can be combined with structural symmetries to remove redundant operators.

All of the aforementioned is accompanied with a comprehensive experimental evalua-
tion on the standard benchmark set.

Keywords: classical planning, invariant, mutex, mutex group

v

vi

Anotace

Řešeńım problémů v klasickém plánováńı je sekvence operátor̊u vedoućı z iniciálńıho stavu
do jednoho z ćılových stav̊u. Problémy v klasickém plánováńı jsou popsány doménově-
nezávisle, takže automatická extrakce strukturálńıch informaćı může výrazně napomoci
hledáńı řešeńı. Zde se zaměř́ıme na strukturálńı informace ve formě stavových invariant
vzájemného vyloučeńı, konkrétně na tzv. mutexy a mutex grupy. Mutex popisuje množinu
fakt̊u, které se nemohou společně vyskytnou v dosažitelném stavu, a mutex grupa popisuje
množinu fakt̊u, z nichž maximálně jeden může patřit do dosažitelného stavu.

V této práci prodiskutujeme základńı vlastnosti mutex̊u a mutex grup a ukážeme,
že vztah mezi nimi lze popsat přes kliky v grafu. Zanalyzujeme výpočetńı složitost
odvozováńı mutex grup a dokážeme, že odvozeńı mutex grup sestávaj́ıćı z maximálńıho
možného počtu fakt̊u je stejně těžké jako rozhodováńı o existenci plánu (PSPACE-úplné).

Na základě toho pak zavedeme novou podtř́ıdu mutex grup, kterou nazveme fact-
alternating mutex grupy (fam-grupy). Následná analýza fam-grup ukáže, že lze fam-grupy
použ́ıt pro detekci nedosažitelných operátor̊u a operátor̊u, které mohou vést jen do dead-
end stav̊u. Dokážeme, že odvozováńı fam-grup je, na rozd́ıl od obecných mutex grup,
NP-úplné a představ́ıme algoritmus pro odvozováńı fam-grup založený na opakovaném
řešeńı celoč́ıselného lineárńıho programu, který je kompletńı vzhledem k maximálńım fam-
grupám. Dále navrhneme algoritmus pro odeb́ıráńı operátor̊u a fakt̊u, které nemohou být
součást́ı žádného plánu.

Formalizujeme odvozováńı mutex grup v tzv. liftované (PDDL) reprezentaci a doká-
žeme, že nejčastěji použ́ıvaný překladač z plánovaćıho systému Fast Downward (FD) ve
skutečnosti odvozuje fam-grupy. Ukážeme, že algoritmus pro odeb́ıráńı operátoru a fakt̊u s
pomoćı fam-grup lze aplikovat v liftované podobě během překladu z PDDL do tzv. ground
reprezentace (STRIPS). Dále navrhneme vylepšeńı stávaj́ıćıho algoritmu pro odvozováńı
liftovaných fam-grup, který produkuje bohatš́ı množinu fam-grup než překladač z FD.

Jako daľśı př́ıklad použit́ı mutex̊u a mutex grup pak navrhneme vylepšeńı dobře
známých potenciálńıch heuristik. Ukážeme, že na mutexech založené zjednoznačněńı ćıle
a podmı́nek operátor̊u vede na méně omezenou formulaci potenciálńıch heuristik, což
následně vede na vyšš́ı př́ıpustné odhady. Dále pak navrhneme několik nových optimal-
izačńıch funkćı pro potenciálńı heuristiky, které využ́ıvaj́ı mutexy k přesněǰśımu odhadu
počtu dosažitelných stav̊u obsahuj́ıćı určité podmnožiny fakt̊u.

V posledńı části práce zavedeme tzv. operátor mutexy jako množiny operátor̊u, jež se
nemohou společně objevit ve stejném (silně) optimálńım plánu. Navrhneme čtyři odvozo-
vaćı metody a ukážeme jak je lze zkombinovat se strukturálńımi symetriemi tak, abychom
byli schopni odstranit nadbytečné operátory.

Vše z výše uvedeného je doplněno komplexńı experimentálńı evaluaćı na standardńım
plánovaćım data setu.

Kĺıčová slova: klasické plánováńı, invariant, mutex, mutex grupa

vii

viii

Contents

1 Introduction 1
1.1 Outline and Contributions . 4
1.2 Relation to Published Work . 5

2 Related Work 7

3 Background 11
3.1 Technical Background . 11
3.2 Running Example . 12

4 Mutex and Mutex Group 15
4.1 Relation Between Mutexes and Mutex Groups 15
4.2 Complexity Analysis . 17
4.3 Summary . 20

5 Fact-Alternating Mutex Group 23
5.1 Structure of Fact-Alternating Mutex Group 23
5.2 Complexity Analysis . 27
5.3 h2-mutexes and Fact-Alternating Mutex Groups 30
5.4 Inference of Fact-Alternating Mutex Groups 33
5.5 Experimental Evaluation . 35

5.5.1 Comparison of Mutex Pairs . 35
5.5.2 Comparison of Mutex Groups . 37
5.5.3 Comparison of Running Times . 40
5.5.4 Translation to Finite Domain Representation 41

5.6 Summary . 44

6 Pruning Tasks with Fact-Alternating Mutex Groups 47
6.1 Pruning Algorithm . 47
6.2 Experimental Evaluation . 48

6.2.1 Forward Pruning of Planning Tasks 49
6.2.2 Forward and Backward Pruning . 51

6.3 Summary . 54

7 Lifted Mutex Group 55
7.1 PDDL and Grounding to STRIPS . 55
7.2 Lifted Mutex Groups . 57
7.3 Pruned Grounding . 59
7.4 Inference of Lifted FAM-Groups . 60

ix

x CONTENTS

7.5 Experimental Evaluation . 63
7.6 Summary . 67

8 Strengthening Potential Heuristics 69
8.1 Background . 69
8.2 Disambiguation . 70
8.3 Potential Heuristics . 72

8.3.1 Transition Normal Form . 74
8.4 Optimization Functions . 75

8.4.1 All States Potentials . 76
8.4.2 Conditioned Ensemble of All States Potentials 77
8.4.3 Adding Constraint on Initial State 78

8.5 Experimental Evaluation . 78
8.6 Summary . 82

9 Operator Mutex 85
9.1 Background . 85
9.2 Operator Mutexes and Redundancy . 86
9.3 Inference of Operator Mutexes . 87

9.3.1 Abstractions . 87
9.3.2 Operators-as-Facts Compilation . 88
9.3.3 Critical-Path Heuristics . 88
9.3.4 Operators with Irreversible Add Effect 89

9.4 Symmetries . 90
9.5 Destroying and Preserving Symmetries . 91
9.6 Inference of Redundant Operators . 92
9.7 Experimental Evaluation . 94
9.8 Summary . 97

10 Conclusion 99

A Publications 101

Bibliography 105

Chapter 1

Introduction

Classical planning deals with the problem of finding a sequence of actions (sometimes also
called operators) with discrete and deterministic effects leading from the initial state to
one of the goal states in a fully observable world. Among problems that can be tackled by
classical planning are logistic problems coordinating the transportation of goods, organic
synthesis problems looking for sequences of reactions producing the target molecules,
cybersecurity problems modelling actions of adversary agents, playing games like FreeCell
or Spider solitaire, or solving various combinatioral puzzles. Classical planning problems
are described in the domain-independent manner, so automatic extraction of a structural
information is vital for solving these problems. This thesis is focused on a structural
information in a form of state invariants which are certain intrinsic properties of a planning
task that hold in all states reachable from the initial state, in particular on the mutual
exclusion state invariants.

A mutual exclusion (mutex) invariant states that a certain set of facts cannot be
part of any reachable state (Bonet & Geffner, 2001). Mutexes have many applications in
classical planning. For example, operators with preconditions containing a mutex cannot
be reached by any sequence of operators applied on the initial state and therefore they
can be safely removed from the planning task (e.g., Alcázar & Torralba, 2015; Fǐser &
Komenda, 2018; Fǐser et al., 2019). This can lead to substantially smaller planning tasks
that are easier to solve.

When a planner finds a solution to the planning task, the solution itself certifies that
the planning task is solvable. However, certifying that the planning task is unsolvable
requires a different approach. Eriksson et al. (2017, 2018) tackles this problem by con-
structing a certificate that describes the reachable part of the state space while showing
that the goal does not belong there. Mutexes are directly applicable here because they
describe the complement to the reachable part of the state space and thus useful for the
construction of unsolvability certificates.

In regression planning, i.e., planning in the backward direction from a goal towards
the initial state, mutexes can be used to extend preconditions of operators with facts
that must be part of the states where the operators are applicable even though these
facts are not explicitly stated in their preconditions, and similarly can be extended the
goal specification. This process is called disambiguation (Alcázar et al., 2013). It can
improve heuristic estimates because it allows to consider facts that would be otherwise
ignored, and it reduces the number of considered states, because more dead-end states
are recognized.

In the SAT-based planning, the planning task is solved by fixing the length of plans (or

1

2 CHAPTER 1. INTRODUCTION

the span of parallel plans) and reformulating the problem as a SAT instance (e.g., Rintanen
et al., 2006; Rintanen, 2012; Chen et al., 2007, 2009; Huang et al., 2012). Mutexes
are important for improving efficiency of the encoding, because they can be encoded as
constraints which in turn helps the solver to identify unreachable states.

Closely related to mutexes are state invariants called mutex groups. A mutex group is a
set of facts out of which maximally one can be part of any reachable state. Classical plan-
ning problems are usually described in the Planning Domain Definition Language (PDDL)
(McDermott, 2000), which is a schematic language that allows to use objects, predicates,
and (parametrized) actions. Most planners, however, require a non-schematic (ground)
representation such as STRIPS (Fikes & Nilsson, 1971) or finite domain representation
(FDR or SAS+) (Bäckström & Nebel, 1995). So most planners need to translate the input
PDDL planning task into STRIPS (where states are represented as sets of facts) or FDR
(where states are assignments to variables) before they can start to solve the problems.
Mutex groups consist of facts that cannot occur together in any reachable state, so they
represent a crucial piece of structural information needed to determine how to construct
variables in FDR (Helmert, 2009; Fǐser & Komenda, 2018; Fǐser, 2020).

A richer set of mutex groups usually leads to a more concise (and information-rich)
representation, which in turn can have profound effect on other parts of a planning process
that utilize FDR variables. For example, abstraction heuristics such as merge-and-shrink
heuristics (Helmert et al., 2014; Sievers et al., 2014) or pattern databases (Culberson
& Schaeffer, 1996; Edelkamp, 2001) start with atomic projections into individual FDR
variables and then proceed with the construction of abstractions using synchronized prod-
ucts and further abstractions. Having large FDR variables consisting of many facts can
substantially speed-up construction of abstractions, because even the atomic projections
cover a large portion of facts. And knowing which facts cannot occur together in any
state can help to identify which parts of the state space are not reachable, which can lead
to more informed and accurate heuristics.

In this work, we focus mainly on the theoretical analysis of mutex groups and the
application of mutex groups that could be beneficial for most planning techniques.

Theoretical Analysis of Mutex Groups We start with the analysis of mutexes and
mutex groups in general and we will show that the relation between mutexes and mutex
groups can be described in terms of cliques in graphs. Then we will show that the
inference of mutex groups in general is as hard as planning (PSPACE-Complete). This,
on one hand, means that mutex groups have a prospect of providing an information-rich
structural information about planning tasks. On the other hand, this also means it might
be very hard to derive mutex groups from the description of a planning task to such
extent that it might be better to try to solve the planning task without wasting any
time on the inference of mutex groups in the first place. The next logical step is to look
for asymptotically “easier” subclasses of mutex groups, because it might help us better
understand what tools it is reasonable to use for the inference and what type of structural
information we can expect to find.

Fact-Alternating Mutex Groups We found a certain polynomially verifiable subclass
of mutex groups, which we named fact-alternating mutex groups (fam-groups). Fact-
alternating mutex groups are defined over the input description of the planning task rather
than over all reachable states. This definition immediately provides a simple polynomial
verification procedure, because we can check whether a certain set of facts is a fam-group

3

by comparing that set against all operators and the initial state. Moreover, we show that
the inference of the maximum sized fam-group is only NP-Complete, i.e., fam-groups are
indeed a special case of mutex groups that is “easier”.

This also leads to a straightforward formulation of an integer linear program (ILP)
whose solution corresponds to a fam-group in the given planning task. The fixpoint
algorithm that is able to provide a complete set of all (maximal) fam-groups is then
only a simple variation on the said formulation in the ILP. One benefit of the inference
algorithm we propose is that it can be easily modified into an anytime algorithm that is
able to produce a set of fam-groups up to some predefined size or until some time limit is
reached. This might be useful in practical applications.

The reason we have chosen the name “fact-alternating” is its main property: The facts
from a fam-group can change from one to another from state to state through application
of an operator (i.e., they alternate between each other), but once we reach a state that does
not contain any fact from the fam-group, none of the following states will contain any fact
from the same fam-group either. This simple property allows us to detect operators that
cannot be part of any plan and thus can be removed from the planning task. Therefore,
we are able to reduce the size of planning tasks using fam-groups as a preprocessing step,
which is potentially beneficial for most planning techniques.

To better understand the structure of fam-groups and given the tight relationship
between mutexes and mutex groups, we focused our attention on the description of mu-
texes that fam-groups consist of. We found that the well-known h2 heuristic (Haslum
& Geffner, 2000) produces a set of mutex pairs (i.e., mutexes consisting of exactly two
facts) that is a superset of mutex pairs obtained from the decomposition of fam-groups.
This means that we can find the building blocks of fam-groups in a polynomial number of
steps, which nicely encloses our theoretical analysis, because it connects NP-Completeness
of fam-groups with the relation between mutexes and mutex groups in terms of graph
cliques.

Lifted Fact-Alternating Mutex Groups In contrast to our approach, the most com-
monly used algorithm for inference of mutex groups from the Fast Downward planner
(Helmert, 2009) works not on the ground (STRIPS, FDR) representation, but on the
lifted (PDDL) representation of planning tasks. We analyzed Helmert’s approach and
we found out that these lifted mutex groups are, in fact, lifted fam-groups, i.e., when
grounded into STRIPS they form fam-groups. We prove this formally and we propose
several improvements of Helmert’s algorithm that allow to find even richer set of lifted
fam-groups. Then, building on our previous findings, we propose an improvement of
the grounding process (i.e., the process of translation from PDDL to STRIPS) that uti-
lize properties of fam-groups so that we are able to reduce the planning task during the
grounding. That is, we are able to detect that certain operators cannot be part of any
plan even before the whole STRIPS representation is constructed from the input PDDL
description.

Disambiguation and Potential Heuristics Consider the following example. Suppose
we have a planning task with facts A, B, C and D, and we know that every reachable
state must contain exactly one of A, B, or C (i.e., {A, B, C} is a special case of “exactly-
one” mutex group). Furthermore, suppose that we also know that every reachable state
containing D cannot contain B or C (i.e., {D, B} and {D, C} are mutexes). From this,
we can easily infer that every state containing D must also contain A.

4 CHAPTER 1. INTRODUCTION

This process of extending a partial information about states is called disambiguation.
It was described by Alcázar et al. (2013) in the context of regression planning, and it
proved to be a crucial part of one of the strongest pruning techniques used in classical
planning that is based on the h2 heuristic (Alcázar & Torralba, 2015).

We use and extend the notion of disambiguation in the context of potential heuristics
(Pommerening et al., 2015a; Seipp et al., 2015). We show that utilization of mutexes can
significantly improve heuristic estimates provided by different types of potential heuristics.
This demonstrates that studying mutual exclusion between facts pays off not only in the
context of pruning of planning tasks as a preprocessing step (which may be beneficial for
all planning techniques), but also in some specific planning techniques—in this case, in
the construction of a heuristic function.

Operator Mutexes In the last part of this thesis, we move our attention to a mutual
exclusion between operators. We introduce a new concept of a strong operator mutex
(op-mutex) describing a set of operators that cannot be part of the same strongly optimal
plan (i.e., the shortest of all optimal plans). We propose several inference methods based
on well-known planning techniques and we experimentally verify that op-mutexes can
be found in a sizable number of domains from the standard benchmark set. Lastly, we
combine the notion of structural symmetries (e.g., Fox & Long, 1999; Pochter et al., 2011;
Shleyfman et al., 2015), previously used in different parts of classical planning, with op-
mutexes in order to prove which operators can be safely removed from the planning task
so that at least one strongly optimal plan is preserved.

1.1 Outline and Contributions

The thesis is structured as follows.

In Chapter 2, we discuss previous work related to the inference of state invariants and
in Chapter 3 we lay down a necessary technical background for this work and we describe
a running example used throughout this thesis.

In Chapter 4, we describe the basic properties of mutexes and mutex groups and we
show that the relation between them can be described in terms of cliques in graphs. We
analyze the complexity of inference of mutex groups and we prove that the inference of
the maximum sized mutex group is PSPACE-Complete, i.e., as hard as deciding whether
a planning task has a plan.

In Chapter 5, we introduce a new subclass of mutex groups called fact-alternating
mutex groups (fam-groups) which are defined not over the reachable states but over the
input planning task. We show that fam-groups can be used for the detection of not only
unreachable states and operators, but also dead-end states and operators that can produce
only dead-end states. We provide an in-depth analysis of the complexity of inference of
fam-groups and we show that the inference of the maximum sized fam-group is only NP-
Complete (in contrast to the PSPACE-Completeness of mutex groups). Furthermore, we
provide an algorithm for the inference of fam-groups based on a repeated solving of Integer
Linear Program that is complete with respect to maximal fam-groups.

In Chapter 6, we show how to use fam-groups to remove facts and operators that
cannot be part of any plan. We perform a detailed experimental evaluation of the pruning
algorithm and its consequent impact on the number of solved task on the standard set of
benchmarks.

1.2. RELATION TO PUBLISHED WORK 5

In Chapter 8, we show that potential heuristics (Pommerening et al., 2015a; Seipp
et al., 2015) can be made significantly more accurate if mutexes are utilized. Since mu-
texes tell us what is not reachable, we use this information to describe more precisely
preconditions of operators and the goal specification than it is explicitly stated in the
input description of the planning task. This often leads to higher heuristic estimates of
potential heuristics and consequently to the higher number of solved tasks.

In Chapter 9, we extend the notion of mutexes into operators. We say that a set
of operators is an operator mutex if they cannot be part of the same (strongly optimal)
plan. We introduce several different methods for the inference of operator mutexes, and
we utilize structural symmetries (e.g., Fox & Long, 1999; Pochter et al., 2011; Shleyfman
et al., 2015) to find out which operators can be removed from the planning task so that
at least one (strongly optimal) plan is preserved.

Finally, we conclude with Chapter 10.

1.2 Relation to Published Work

Most of this thesis is adapted from the following publications:

1. Fǐser, D. & Komenda, A. (2018). Fact-alternating mutex groups for classical plan-
ning. Journal of Artificial Intelligence Research, 61, 475–521.

This is the core publication that deals with mutexes, mutex groups, and fact-
alternating mutex groups. Chapters 2 to 6 are adapted from this paper.

2. Fǐser, D. & Komenda, A. (2018). Fact-alternating mutex groups for classical plan-
ning (extended abstract). In Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI’18), (pp. 5603–5607).

This is a considerably shortened version of the previous paper published in the
journal track of the conference IJCAI.

3. Fǐser, D. & Torralba, Á. & Shleyfman, A. (2019). Operator mutexes and symmetries
for simplifying planning tasks. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI’19), (pp. 7586–7593).

This paper introduces the notion of operator mutexes. Chapter 9 is adapted from
this paper.

4. Fǐser, D. (2020). Lifted fact-alternating mutex groups and pruned grounding of clas-
sical planning problems. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI’20), (Accepted).

This paper deals with lifted fact-alternating mutex groups. Chapter 7 is adapted
from this paper.

5. Fǐser, D. & Horč́ık, R. & Komenda, A. (2020). Strengthening potential heuris-
tics with mutexes and disambiguations. In Proceedings of the 30th International
Conference on Automated Planning and Scheduling (ICAPS’20), (Accepted).

This paper describes the notion of multi-fact disambiguation and describes several
improvements of potential heuristics. Chapter 8 is adapted from this paper.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

State invariants are formulas that are true in every state of a planning task reachable from
the initial state by the application of a sequence of operators. In this section, we provide
a brief discussion of different approaches to the inference of state invariants related to the
approach presented in this work.

One of the first approaches to the inference of state invariants was the DISCOPLAN
system proposed by Gerevini & Schubert (1998, 2000). The algorithm uses a guess, check,
and repair approach for generating invariants. Invariants are first hypothesized from the
definitions of the operators. The consecutive steps involve verification that the invari-
ants still hold in all reachable states and the unverified invariants are refined to form
new invariants that are then in turn verified again. The refinements are based on sets of
candidate supplementary conditions called “excuses” that are extracted during the veri-
fication phase. These “excuses” are extracted through analysis considering all operators.
The analysis allows the algorithm to make more informed choices in the consequent re-
finement than the “excuses” that would be derived only from the first operator violating
the invariant. However, this comes with an increased computational burden as noticed
by Helmert (2009). The algorithm is able to generate a wide range of different types of
state invariants (or state constraints as they are called by Gerevini & Schubert) such as
implicative constraints of the form φ ⇒ ψ stating that every state satisfying formulae
φ has to satisfy ψ also, static constraints providing type information about predicates,
or xor constraints providing information about the mutual exclusion of two literals given
some additional conditions.

Type Inference Module (TIM) proposed by Fox & Long (1998) and further extended
by Cresswell et al. (2002) takes the domain description possibly without any information
about types and infers (or enriches) a type structure from the functional relationships in
the domain. State invariants can be extracted from the way in which the inferred types
are partitioned.

Rintanen (2000) proposed an iterative algorithm for generating state invariants. The
algorithm uses a guess, check, and repair approach and it is polynomial in time due to
restrictions on the form and length of the invariants. The procedure starts with the
identification of the initial set of candidate invariants corresponding to the grounded facts
in the initial state. In the following steps, the initial set of candidates is expanded with
new invariants that are created by expanding invariant candidates from the previous step
using grounded operators. The invariant candidates that do not preserve their invariant
property are rejected and new candidates that are weaker in the sense that they hold in
more states than the original ones are created. An interesting property of this algorithm

7

8 CHAPTER 2. RELATED WORK

is that it considers all invariant candidates during the creation of new ones instead of
expanding one invariant at a time.

Mukherji & Schubert (2005, 2006) proposed a completely different approach. Instead
of analyzing operators of the planning task, state invariants are inferred from one or more
reachable states. The set of reachable states can be obtained by random walks through
state space or by an exhaustive search with a bounded depth. State invariants are then
inferred by an any-time algorithm employing a data analysis of the provided reachable
states. The resulting invariants are not guaranteed to be correct in the sense that they do
not have to hold in all reachable states besides those provided, but the authors suggest that
some other algorithm, such that of Rintanen (2000), can be used for the quick verification
of the correctness of the invariants produced.

A generalization of the hmax heuristic to a family of hm heuristics (Haslum & Geffner,
2000; Haslum, 2009; Alcázar & Torralba, 2015) offers another method for the generation of
invariants. hmax is a widely known and a well understood admissible heuristic for STRIPS
planning. The heuristic value is computed on a relaxed reachability graph as a cost of the
most costly fact from a conjunction of reachable facts. The heuristic works with single
facts, but it can be generalized to consider a conjunction of at most m facts instead. h1

would then be equal to hmax, h2 would build the reachability graph with single facts and
pairs of facts, h3 would add triplets of facts also, and hm would consider conjunctions
of at most m facts. This heuristic is not bound by h+ and is even equal to the optimal
heuristic for sufficiently large m. Unfortunately, the cost of the computation increases
exponentially in m.

The important property of hm related to inference of invariants is its ability to provide
a set of fact conjunctions that are not reachable from the initial state. The facts that do
not appear in the reachability graph of h1 (hmax) cannot affect the planning procedure.
The same can be said about the unreachable conjunctions of m facts in the case of
hm. For example, an unreachable pair of facts in case of h2 can be interpreted as an
invariant stating that both facts from the pair cannot hold at the same time. Similarly,
an unreachable triplet of facts in case of h3 corresponds to an invariant stating that there
is no reachable state that contains all three facts at the same time. Therefore, the hm

heuristic is able to find mutex invariants of a cardinality up to m.

The state invariants inferred by the algorithm introduced by Rintanen (2008) have a
form of a disjunction of facts possibly with negations. The algorithm employs regression
operators and satisfiability tests to check whether the clauses form invariants. Each clause
initially consists of a single fact or a negation of a fact holding in the initial state. The
clause that is not approved as an invariant is replaced by a set of weaker clauses each
containing one additional fact (or its negation). Rintanen’s algorithm is able to produce
invariants in a more general form than hm invariants, because an hm invariant consisting
of m facts corresponds to the disjunction ¬f1 ∨ ... ∨ ¬fm. Moreover, it was proven that
the algorithm produces a superset of hm invariants, therefore, it is a generalization of the
hm mutexes.

An algorithm for translating PDDL planning tasks into a concise finite domain repre-
sentation (FDR) was proposed by Helmert (2009). The construction of the FDR is based
on identifying invariants in the form of mutex groups. A mutex group states that, at
most, one of the invariant facts can be present in any reachable state. The invariants
are generated using a guess, check, and repair procedure running on the lifted PDDL
domain. The procedure is initialized with small invariants containing only a single atom.
The following step is proving the invariants through the identification of so called threats.

9

A threat emerges whenever there is an operator that has either two or more instances of
invariant atoms in its add effects or the instances in the add effects are not compensated
by the same number of instances in the delete effects. The threatened invariants are then
either discarded or refined by adding more atoms that could compensate the invariant
in the delete effects. The invariants that are not threatened are clearly invariants. The
resulting invariants in a lifted form are grounded to a set of facts and they are used in
this final form for construction of variables in FDR. Bernardini et al. (2018) proposed an
extension of the Helmert’s algorithm into temporal planning.

10 CHAPTER 2. RELATED WORK

Chapter 3

Background

3.1 Technical Background

A classical planning task consists of a single fully described initial state, a set of determin-
istic operators that can alter state of the world, and a description of the goal. Formally,
we can describe classical planning tasks using the STRIPS formalism (Fikes & Nilsson,
1971).

Definition 3.1. A STRIPS planning task Π is specified by a tuple Π = 〈F ,O, sI , sG〉,
where F = {f1, . . . , fn} is a set of facts, and O = {o1, . . . , om} is a set of grounded
operators. A state s ⊆ F is a set of facts, sI ⊆ F is an initial state and sG ⊆ F is a
goal specification.

An operator o is a tuple o = 〈pre(o), add(o), del(o), c(o)〉, where pre(o) ⊆ F is a set
of preconditions of the operator o, and add(o) ⊆ F and del(o) ⊆ F are sets of add and
delete effects, respectively, and c(o) ∈ R+

0 is a cost of the operator. All operators are well-
formed, i.e., add(o) ∩ del(o) = ∅ and pre(o) ∩ add(o) = ∅. An operator o is applicable
in a state s if pre(o) ⊆ s. The resulting state of applying an applicable operator o in a
state s is the state oJsK = (s \ del(o)) ∪ add(o). A state s is a goal state iff sG ⊆ s.

A sequence of operators π = 〈o1, . . . , on〉 is applicable in a state s0 if there are states
s1, . . . , sn such that oi is applicable in si−1 and si = oiJsi−1K for i ∈ {1, . . . , n}. The
resulting state of this application is πJs0K = sn and c(π) =

∑n
i=1 c(oi) denotes the cost of

this sequence of operators. By |π| we denote the length of the sequence. A sequence of
operators π is called an s-plan iff π is applicable in a state s and πJsK is a goal state. An
s-plan π is called optimal if its cost is minimal among all s-plans and it is called strongly
optimal if it is an optimal plan and it contains the minimum number of operators among
optimal plans. sI-plan is called simply a plan.

Let F ⊆ F denote a set of facts, and let f ∈ F denote a fact. F (f) is reachable from
state s if there exists an operator sequence π such that π is applicable in s and F ⊆ πJsK
(f ∈ πJsK). F (f) reachable from sI is called simply reachable. F (f) that is not reachable
(from s) is called unreachable (from s). F (f) is relaxed reachable from state s
if there exists an operator sequence π = 〈o1, . . . , on〉 such that F ⊆ π′JsK (f ∈ π′JsK)
where π′ = 〈o′1, . . . , o′n〉 and o′i = 〈pre(oi), add(oi), ∅, c(oi)〉 for every i ∈ {1, . . . , n}. F (f)
relaxed reachable from sI is called simply relaxed reachable. F (f) that is not relaxed
reachable (from s) is called relaxed unreachable (from s). An operator o is (relaxed)
reachable (from state s) iff pre(o) is (relaxed) reachable (from s). The set of all reachable
states is denoted by RΠ. A state s is a dead-end state iff sG 6⊆ s and there is no s-plan.

11

12 CHAPTER 3. BACKGROUND

We will also use some auxiliary notation. Given a set of facts X ⊆ F and a number
k,
(
X
k

)
denotes a set of all subsets of X of size exactly k, i.e.,

(
X
k

)
= {F | F ⊆ X, |F | = k}

Most of this thesis uses the STRIPS formalism, but we will also use and refer to the
finite domain representation (FDR) of planning tasks (Bäckström & Nebel, 1995), where
state are represented as assignments to variables with finite domains.

Definition 3.2. An FDR planning task ΠV is specified by a tuple ΠV = 〈V ,O, I, G〉.
V is a finite set of variables, each variable V ∈ V has a finite domain dom(V). A fact
〈V, v〉 is a pair of a variable V ∈ V and one of its values v ∈ dom(V). The set of all facts
is denoted by F = {〈V, v〉 | V ∈ V , v ∈ dom(V)}, and the set of facts of the variable V
is denoted by FV = {〈V, v〉 | v ∈ dom(V)}. A partial state p is a variable assignment
over some variables vars(p) ⊆ V . We write p[V] for the value assigned to the variable
V ∈ vars(p) in the partial state p. We also identify p with the set of facts contained in
p, i.e., p = {〈V, p[V]〉 | V ∈ vars(p)}. A partial state s is a state if vars(s) = V . I is an
initial state. G is a partial state called goal, and a state s is a goal state iff G ⊆ s.
Let p, t be partial states. We say that t extends p if p ⊆ t.
O is a finite set of operators, each operator o ∈ O has a precondition pre(o) and effect

eff(o), which are partial states over V , and a cost c(o) ∈ R+
0 . An operator o is applicable

in a state s iff pre(o) ⊆ s. The resulting state of applying an applicable operator o in a
state s is another state oJsK such that oJsK[V] = eff(o)[V] for every V ∈ vars(eff(o)), and
oJsK[V] = s[V] for every V ∈ V \ vars(eff(o)).

A sequence of operators, ((strongly) optimal) (s-)plan, dead-end state, and (relaxed)
(un)reachability is defined analogously to STRIPS. The set of all reachable states is de-
noted by RΠV .

Note that the we re-use the same symbol for the set of facts (F) as is used for the
STRIPS representation, because it describes, essentially, the same concept, and the same
symbol for the set of operators (O) or for the application of an operator. However, it will
always be clear from the context to which formalism we refer to.

We also use a standard definition of a graph and a graph clique.

Definition 3.3. An undirected simple graph G is a tuple G = 〈V,E〉, where V denotes
a set of vertices and E denotes a set of edges such that each edge {vi, vj} ∈ E connects
two different vertices (vi 6= vj) and there are no two edges connecting the same vertices.
A non-empty set C ⊆ V of vertices of G forms a clique if each vertex of C is connected
by an edge to every other vertex of C. A clique that is not a subset of any other clique
is called a maximal clique. A maximum clique in G is a clique such that there is no
other clique consisting of more vertices.

3.2 Running Example

Consider the following simple example of the gorilla-feeding planning task depicted
in Figure 3.1. The planning task describes a zookeeper whose job is to feed a gorilla.
The zookeeper can move between adjacent squares, he can take some food from the stock,
carry it to the gorilla and feed it if the gorilla is hungry. The gorilla can escape the zoo
if it is hungry.

The planning task is described using six facts: (at a), (at b), and (at c) specify
a position of the zookeeper, (hungry) and (fed) denote whether the gorilla is hungry

3.2. RUNNING EXAMPLE 13

A B C
x

move-a-b move-b-c

move-b-a

t
a
k
e
-
f
o
o
d

escape

feed-gorilla

Facts (F): (at a), (at b), (at c), (hungry), (fed), (carry-food)

Operators (O):
move-a-b: (at a) 7→ (at b), ¬(at a)

move-b-a: (at b) 7→ (at a), ¬(at b)

move-b-c: (at b) 7→ (at c), ¬(at b)

take-food: (at a), (hungry) 7→ (carry-food)

feed-gorilla: (at c), (hungry), (carry-food) 7→ (fed), ¬(hungry), ¬(carry-food)
escape: (hungry) 7→ (at c), ¬(at a), ¬(at b), ¬(hungry), ¬(carry-food)

Initial state (sI): (at b), (hungry)

Goal (sG): (fed)

Figure 3.1: The gorilla-feeding planning task.

or it was fed, and (carry-food) specifies whether the zookeeper carries the food for the
gorilla.

The operators in Figure 3.1 are described using simplified notation where preconditions
are placed on the left hand side of the arrow symbol and the effects on the right hand side.
The delete effects are listed with the ¬ symbol in front of them and the add effects are listed
without it. So for example, the operator feed-gorilla has three preconditions pre(o) =
{(at c), (hungry), (carry-food)}, one add effect add(o) = {(fed)}, and two delete
effects del(o) = {(hungry), (carry-food)}. The planning task contains three operators
for moving between adjacent squares (move from-square to-square), one operator for
taking food from the square that contains the food stock (take-food), one operator for
feeding the gorilla (feed-gorilla) that can be applied only on a square where the gorilla is
and only when the zookeeper carries the food with him, and one operator corresponding to
the gorilla escaping from the zoo (escape), which results in the zookeeper being punished
by moving into the gorilla’s cage. The initial state is set to sI = {(at b), (hungry)}
meaning that the zookeeper starts at square B and the gorilla is hungry. The goal sG =
{(fed)} is to feed the gorilla.

(at a),

(hungry)

(at b),

(hungry)

(at c),

(hungry)

(at a),

(hungry),

(carry-food)

(at b),

(hungry),

(carry-food)

(at c),

(hungry),

(carry-food)

(at c),

(fed)

(at c)
move-a-b

move-b-a

move-b-c

move-a-b

move-b-a

move-b-c

take-food

feed-gorilla

escape

Figure 3.2: Reachable states and transitions between reachable states in the
gorilla-feeding planning task.

All eight reachable states of the planning task are depicted in Figure 3.2 along with
all possible transitions between the states. The initial state is marked with the dashed
box, the goal state is depicted in a double border box, and the dead-end states are
indicated by gray background. Figure 3.2 shows that the zookeeper can move between
adjacent squares which is reflected in the current state as the exchange between (at ...)

facts. Once the zookeeper takes food from the stock, the current state is extended by the
fact (carry-food). And once the gorilla is fed, the gorilla is not hungry anymore and
the zookeeper does not carry the food. The effects of operators move-b-c, take-food,

14 CHAPTER 3. BACKGROUND

feed-gorilla, and escape cannot be reversed, i.e., once they are used, it is not possible
to come back to the previous state by any sequence of operators.

Note that move-b-c can result in a dead-end state if the zookeeper does not carry
food and escape always results in a dead-end state. These two drawbacks could be fixed,
but the gorilla-feeding planning task will be used as a running example on which we
will demonstrate different types of mutex groups and this enables us to keep the example
planning task very brief but with the ability to demonstrate the differences.

Chapter 4

Mutex and Mutex Group

State invariants in domain-independent planning are certain intrinsic properties of a par-
ticular planning task that hold in all states reachable from the initial state. State invari-
ants (as well as other types of invariants) tell something about the internal structure of
the problem. This revealed structure can be further utilized in the process of solving the
task. State invariants can, for example, be used to design heuristic functions that can
better guide search algorithms. They can be used to prune the search space within which
a plan is searched for or even to reformulate the original problem to some more simple
form as a preprocessing step.

A mutual exclusion (mutex) invariant states that certain facts cannot be true at the
same time in any reachable state. A closely related to mutexes is another type of state
invariant called mutex group. A mutex group is a set of facts out of which at most one is
true in any reachable state, i.e., a mutex group consists of facts that are pairwise mutually
exclusive.

In this chapter, we discuss basic properties of mutexes and mutex groups and the
relation between them (Section 4.1). Furthermore, we provide a complexity analysis
showing that the inference of the maximum sized mutex group (and thus also a complete
set of mutex pairs) is PSPACE-Complete (Section 4.2).

For this chapter, let Π = 〈F ,O, sI , sG〉 denote a STRIPS planning task.

4.1 Relation Between Mutexes and Mutex Groups

A mutex and a mutex group are both defined as invariants with respect to all states
reachable from the initial state by a sequence of operators. A mutex invariant states that
certain facts cannot be part of the same reachable state at the same time.

Definition 4.1. A mutex M ⊆ F is a set of facts such that for every reachable state
s ∈ RΠ it holds that M 6⊆ s.

It is easy to see that every superset of a mutex is also mutex, but a subset of mutex
is not necessarily a mutex. For example looking at the reachable states of our running
example (Figure 3.2), {(at b), (hungry), (fed)} is a mutex because there is no reachable
state containing all these facts, but {(at b), (hungry)} is not a mutex.

Proposition 4.2. If M ⊆ F is a mutex, then every N ⊆ F such that N ⊇M is a mutex.

Proof. It follows directly from Definition 4.1.

15

16 CHAPTER 4. MUTEX AND MUTEX GROUP

A mutex group is defined as a set of facts out of which, maximally, one can be true
in any reachable state, i.e., the facts from a mutex group are pairwise mutex. And a
maximal mutex group is a mutex group that cannot be extended by any fact and remain
a mutex group.

Definition 4.3. A mutex group M ⊆ F is a set of facts such that for every reachable
state s ∈ RΠ it holds that |M ∩ s| ≤ 1. A mutex group that is not a subset of any other
mutex group is called a maximal mutex group.

An example of a mutex group in our running example planning task is the mutex
group {(at a), (at b), (at c)} describing that the zookeeper must be at one of the
positions. Another, less obvious, examples of mutex groups are {(at a), (at b), (fed)}
or {(carry-food), (fed)}.

In contrast to mutexes, every subset of a mutex group is also a mutex group. And
every mutex group consisting of at least two facts is a mutex.

Proposition 4.4. If M ⊆ F is a mutex group, then every N ⊆M is a mutex group.

Proof. It follows directly from Definition 4.3.

Proposition 4.5. If M ⊆ F such that |M | ≥ 2 is a mutex group, then M is a mutex.

Proof. It follows directly from Definition 4.3 and Definition 4.1.

Where the both notions coincide is on mutexes containing exactly two facts, which we
call mutex pairs. That is, a mutex pair is both a mutex and a mutex group at the same
time, because if two facts form a mutex then every reachable state can contain at most
one fact from this mutex, which is exactly the definition of a mutex group. And if two
facts form a mutex group then it is a mutex by Proposition 4.5.

Proposition 4.6. Let M ⊆ F , |M | = 2, denote a pair of facts. M is a mutex iff M is a
mutex group.

Proof. If M is a mutex, then by Definition 4.1 it holds for every reachable s ∈ RΠ that
M 6⊆ s. And since |M | = 2 it follows that |M ∩ s| ≤ 1. The other direction follows from
Proposition 4.5.

Since every subset of a mutex group is also a mutex group, every mutex group can
be decomposed into a set of mutex pairs by enumerating all pairs facts from the mutex
group. Now we show that we can also compose a mutex group from a set of mutex pairs.
In other words, we show that a set of facts is a mutex group if and only if every pair of
facts from the mutex group is a mutex pair.

Proposition 4.7. Let M ⊆ F denote a set of facts such that |M | ≥ 2. M is a mutex
group iff every P ∈

(
M
2

)
is a mutex group (mutex).

Proof. From left to right follows from Proposition 4.4 (and Proposition 4.6). To prove
the other direction by contradiction, let us assume that every P ∈

(
M
2

)
is a mutex group,

but M is not a mutex group. If M is not a mutex group then there exists a reachable
state s such that |s ∩M | ≥ 2. This means that there must exist a pair of facts {f1, f2}
such that f1, f2 ∈ M and f1, f2 ∈ s which is in contradiction with the assumption that
every P ∈

(
M
2

)
is a mutex group because {f1, f2} belongs to

(
M
2

)
by definition.

4.2. COMPLEXITY ANALYSIS 17

Proposition 4.7 describes a close relationship between mutex pairs and mutex groups.
The next question is how to actually construct mutex groups from mutex pairs. In the
following, we show that we can construct a graph from a given set of mutex pairs where
each vertex corresponds to a fact and each edge corresponds to a mutex pair, and then
every clique in this graph corresponds to a mutex group.

Definition 4.8. Let Π = 〈F ,O, sI , sG〉 denote a STRIPS planning task, and letM⊆ 2F

denote a set of mutex pairs. A mutex pair graph for M, denoted by MPGM, is a
simple undirected graph MPGM = 〈V,E〉, where each vertex corresponds to a fact, i.e.,
V = {vf | f ∈ F}, and each edge corresponds to a mutex pair, i.e., E = {{vf , vf ′} |
{f, f ′} ∈ M}.

Proposition 4.9. Let Π = 〈F ,O, sI , sG〉 denote a STRIPS planning task, let M ⊆ 2F

denote a set of mutex pairs, let MPGM = 〈V,E〉 denote a mutex pair graph for M, and
let C = {vf1 , . . . , vfn} ⊆ V denote a set of vertices of MPGM. If C is a clique, then
M = {f1, . . . , fn} is a mutex group in Π.

Proof. If C is a clique, then every {f, f ′} ∈ M , f 6= f ′, is a mutex by Definition 4.8. So
it follows from Proposition 4.7 that M is a mutex group.

Proposition 4.9 describes how can be mutex groups inferred for STRIPS planning
tasks with any algorithm that produces mutex pairs. The most commonly used method
for inference of mutexes is the hm heuristic (Haslum & Geffner, 2000), usually only for
m = 2. So to find mutex groups, we can run h2 to produce a set of mutex pairs M,
then we can construct a mutex pair graph MPGM and finally every clique in MPGM
corresponds to a mutex group. Note that inference of cliques in graphs is NP-Complete
problem (Karp, 1972) so even with a given set of mutex pairs it is still a hard problem to
find mutex groups.

4.2 Complexity Analysis

The complexity analysis of the mutex group structure we propose is based on an analysis
of complexity classes of decision problems corresponding to the problems of finding the
largest possible mutex groups.

Definition 4.10. Let M denote a set of all mutex groups. M is a maximum mutex
group iff M ∈M and |M | ≥ |N | for every N ∈M.

Definition 4.11. Maximum-Mutex-Group decision problem: Given a planning task
Π and an integer k, does Π contain a mutex group of size at least k?

A maximum mutex group is a mutex group that has the maximum possible number
of facts in the corresponding planning task, i.e., the maximum mutex groups are the
largest mutex groups in the number of facts they consist of. It should be clear that every
maximum mutex group is also a maximal mutex group by Definition 4.1, but not the
other way around. Maximum-Mutex-Group is a decision problem corresponding to
the task of finding a maximum mutex group.

Definition 4.12. Plan-Exist decision problem: Given a planning task Π, determine
the existence of a solution.

18 CHAPTER 4. MUTEX AND MUTEX GROUP

Now, we show (Theorem 4.17) that the Maximum-Mutex-Group is PSPACE-Com-
plete in the following way. First, we prove that it is PSPACE-Hard (Proposition 4.15)
using a polynomial reduction from Plan-Exist which is known to be PSPACE-Complete
(Bylander, 1994). Then, we will present a PSPACE algorithm (Algorithm 4.1) solving the
Maximum-Mutex-Group problem which leads to the conclusion that the Maximum-
Mutex-Group is PSPACE-Complete. Moreover, we will show that a similar reasoning
can be used to prove that the inference of a complete set of mutex pairs is also PSPACE-
Complete.

Definition 4.13. Given a planning task Π = 〈F ,O, sI , sG〉, ΠM = 〈FM ,OM , sI , sG〉
denotes a planning task such that FM = F ∪ {⊥}, ⊥ 6∈ F , and OM = O ∪ {osat}, where
pre(osat) = sG, del(osat) = {}, and add(osat) = FM .

Lemma 4.14. Let M denote a maximum mutex group in ΠM . A solution of Π exists iff
|M | ≤ 1.

Proof. A solution of Π exists iff there exists a reachable state s such that sG ⊆ s. If
such s exists then osat is a reachable operator and, thus, its resulting state ssat = FM is
also reachable. So it follows that every mutex group of ΠM consists of, at most, one fact
because any mutex group N having more than one fact would violate the mutex group
property on ssat (|N ∩ ssat| ≥ 2). Therefore, if a solution of Π exists, then |M | ≤ 1.

To prove the other direction by contradiction, let us assume that we have a maximum
mutex group M in ΠM such that |M | ≤ 1 and Π has no solution. If Π has no solution,
then there does not exist a reachable state s such that sG ⊆ s, which means that osat is
not applicable in any reachable state, therefore, the state ssat = FM is not reachable. But
the fact ⊥ appears in ΠM only in ssat, therefore, any mutex group in ΠM can be extended
by ⊥ and it still remains a mutex group. Finally, since a mutex group of size of at least
one (a single fact is always a mutex group) exists in any planning task and since such a
mutex group can be in ΠM extended by ⊥, then it follows that a maximum mutex group
M must have at least two facts (|M | ≥ 2) which is in contradiction with the assumption
that |M | ≤ 1. Therefore, if |M | ≤ 1, then Π has a solution.

Proposition 4.15. Maximum-Mutex-Group is PSPACE-Hard.

Proof. We will reduce Plan-Exist to Maximum-Mutex-Group. Clearly, any plan-
ning task Π can be translated to a different planning task ΠM in polynomial time. It
follows from Lemma 4.14 that we can determine whether Π has a solution by solving
the Maximum-Mutex-Group problem on ΠM in the following way: If the maximum
mutex group in ΠM has, at most, one fact, then the planning task Π has a solution. If
the maximum mutex group in ΠM has more than one fact, then the planning task Π does
not have a solution. Therefore, the Maximum-Mutex-Group is PSPACE-Hard.

Once we have proven that the Maximum-Mutex-Group is PSPACE-Hard, prov-
ing that it is also PSPACE-Complete requires to show that it is possible to decide the
Maximum-Mutex-Group using a polynomial amount of space. Algorithm 4.1 shows
a pseudocode for such a procedure. The main idea of the algorithm is that every set
of facts M of size of at least two is a mutex group if and only if every pair of facts
from M is also a mutex group (Proposition 4.6). In other words, if we are able to infer
all mutex groups containing exactly two facts, we can always use these mutex pairs for
the construction of all other mutex groups of size of at least two. The main cycle of
Algorithm 4.1 uses Plan-Exist to prove whether each pair of facts is a mutex group

4.2. COMPLEXITY ANALYSIS 19

Algorithm 4.1: Maximum-Mutex-Group

Input: A constant k, planning task Π = 〈F ,O, sI , sG〉
Output: “Yes” or “No”

1 Construct a complete graph
G = 〈V = {vf | f ∈ F}, E = {{vf , vf ′} | {f, f ′} ⊆ F , f 6= f ′};

2 for each f, f ′ ∈ F such that f 6= f ′ do
3 if there exists a plan for Π = 〈F ,O, sI , {f, f ′}〉 then /* Plan-Exist */

4 E ← E \ {vf , vf ′};
5 if G contains a clique of size at least k then return “Yes”; /* Maximum-Clique */

6 else return “No”;

or if it is not, i.e., whether the facts are part of some reachable state or not. The in-
ferred mutex pairs are used for construction of a graph where each edge corresponds
to one mutex pair. And finally, Maximum-Clique is used to infer a maximum mu-
tex group. Such an algorithm clearly uses only a polynomial amount of space which is
formally proven in Lemma 4.16. Theorem 4.17 just joins Proposition 4.15 (Maximum-
Mutex-Group is PSPACE-Hard) and Lemma 4.16 (Maximum-Mutex-Group belongs
to PSPACE) to formulate the main contribution of this section, i.e., the proof that the
Maximum-Mutex-Group is PSPACE-Complete.

Lemma 4.16. Algorithm 4.1 decides Maximum-Mutex-Group using a polynomial
amount of space in the size of the input.

Proof. Algorithm 4.1 starts with a complete graph constructed from the facts as its ver-
tices. Then, in O(|F|2) steps, each pair of facts is checked whether they appear together
in any reachable state (line 3). This is checked by deciding the Plan-Exist on the mod-
ified input planning task, where the original goal is replaced by a new goal consisting of
the tested pair of facts. Plan-Exist is PSPACE-Complete, therefore this step requires
at most a polynomial amount of space. If there exists a reachable state containing both
facts, an edge connecting those two facts is removed from the graph. The edges remaining
in the graph only connect those facts that never appear together in the same reachable
state. Therefore every pair of facts connected by an edge is a mutex group.

It follows from Proposition 4.6 that having all mutex pairs is enough to construct
any other mutex group which also covers the maximum mutex groups. Therefore, by
deciding Maximum-Clique on the constructed graph with the same constant k (line 5),
the Maximum-Mutex-Group is decided too. This also requires at most a polynomial
amount of space, because Maximum-Clique is NP-Complete. (If the graph has no edges,
any single fact is a maximum mutex group and any single vertex is a maximum clique as
well.)

Theorem 4.17. Maximum-Mutex-Group is PSPACE-Complete.

Proof. The Maximum-Mutex-Group is PSPACE-Hard (Proposition 4.15) and it also
belongs to PSPACE (Lemma 4.16), therefore, the Maximum-Mutex-Group is PSPACE-
Complete.

Now we have shown that the inference of maximum mutex group in general is as
hard as planning (PSPACE-Complete). Previously, we have shown that there is a close
relationship between mutex pairs and mutex groups (Proposition 4.7). We can decompose
a mutex group into a set of mutex pairs and, conversely, if we are given a set of mutex pairs,

20 CHAPTER 4. MUTEX AND MUTEX GROUP

Algorithm 4.2: Maximum-Set-Of-Mutex-Pairs

Input: A constant k, planning task Π = 〈F ,O, sI , sG〉
Output: “Yes” or “No”

1 n←
(|F|

2

)
/* The number of all pairs of facts in the problem. */

2 for each f, f ′ ∈ F such that f 6= f ′ do
3 if there exists a plan for Π = 〈F ,O, sI , {f, f ′}〉 then /* Plan-Exist */

4 n← n− 1;

5 if n ≥ k then return “Yes”;
6 else return “No”;

we can construct a mutex group from them by looking for cliques in the corresponding
mutex pair graph (Proposition 4.9), which is NP-Complete. From this, it follows that the
inference of mutex pairs is also as hard as planning.

Definition 4.18. Maximum-Set-Of-Mutex-Pairs decision problem: Given a plan-
ning task Π and an integer k, does Π contain a at least k mutex pairs?

We prove that Maximum-Set-Of-Mutex-Pairs is PSPACE-Complete in two steps.
First, a small modification of Algorithm 4.1, depicted in Algorithm 4.2, shows that
Maximum-Set-Of-Mutex-Pairs is in PSPACE, because we can repeatedly solve the
problem for each pair of facts as goals and count the number of pairs of facts that is not
reachable, i.e., count the number of mutex pairs. Second, we can re-use the construction of
ΠM (Definition 4.13) and Lemma 4.14 to show that Maximum-Set-Of-Mutex-Pairs
is PSPACE-Hard, because if the maximum mutex group in the problem consists of at most
one fact, then such a problem does not contain any mutex pairs.

Theorem 4.19. Maximum-Set-Of-Mutex-Pairs is PSPACE-Complete.

Proof. Algorithm 4.2 solves Maximum-Set-Of-Mutex-Pairs within the polynomial
space, because it repeatedly uses Plan-Exist (which is PSPACE-Complete) on the input
planning task to decide whether each pair of facts is reachable and it counts the number
of the unreachable pairs, i.e., the number of mutex pairs. Therefore, Maximum-Set-Of-
Mutex-Pairs belongs to PSPACE.

To show PSPACE-hardness, we reduce Plan-Exist to Maximum-Set-Of-Mutex-
Pairs. As we have shown in the proof of Proposition 4.15, we can translate Π to ΠM (Def-
inition 4.13) in a polynomial number of steps. It follows from Lemma 4.14 and Proposi-
tion 4.7 that we can decide Plan-Exist by deciding Maximum-Set-Of-Mutex-Pairs
with k = 1 in the following way: If there are no mutex pairs in ΠM , then the maximum
mutex group consists of at most one fact and therefore Π has a solution. If there is at
least one mutex pair in ΠM , then ΠM must have a maximum mutex group of size at least
2, therefore Π does not have a solution.

4.3 Summary

This chapter was focused on the relation between mutexes and mutex groups, and on
the complexity analysis of mutex groups. We have shown that every mutex group can
be decomposed into a set of mutex pairs, and that, given a set of mutex pairs, we can
construct mutex groups consisting of those mutex pairs by looking for cliques in mutex
pair graphs. Furthermore, we have shown that the inference of mutex groups is as hard

4.3. SUMMARY 21

as planning (PSPACE-Complete) and also that the same holds for the inference of mutex
pairs. This paints a rather dim picture, because if we want to use mutex groups to help
us solve planning tasks, we have to use an inference machinery as hard as planning in the
worst case. However, in the next chapter we show that not all hope is lost. We formalize
a subclass of mutex groups of which inference is NP-Complete and we show that this
subclass of mutex groups is both information-rich and we can infer them in a reasonable
time in practice.

22 CHAPTER 4. MUTEX AND MUTEX GROUP

Chapter 5

Fact-Alternating Mutex Group

In this chapter, we move away from the general mutex groups towards a more specific
subclass. We introduce a more restricted form of mutex groups, called fact-alternating
mutex groups (fam-groups), defined over the description of planning task rather than over
the reachability of states (Section 5.1). We show that the inference of this subclass of
mutex groups is only NP-Complete (Section 5.2). Since fam-groups are mutex groups,
they can be decomposed into mutex pairs as well. To pinpoint the complexity of fam-
groups more precisely, we investigate the relation between fam-groups and the hm heuristic
(Haslum & Geffner, 2000). We show that mutex pairs obtained from the decomposition
of fam-groups are always a subset of mutex pairs obtained from the h2 heuristic, but not
necessarily the other way around (Section 5.3).

Lastly, we propose a novel inference algorithm that is complete with respect to all max-
imal fam-groups (Section 5.4) and we provide an in-depth experimental evaluation of the
inferred fam-groups (Section 5.5). We compare fam-groups to the mutex groups inferred
with the most commonly used algorithm from the Fast Downward planner (Helmert, 2009)
and to the mutex groups constructed from the mutex pairs obtained from the h2 heuristic.
The evaluation shows that fam-groups are indeed information-rich state invariants, which
we demonstrate on a use-case where we use fam-groups for construction of variables in
the finite domain representation resulting in the increased number solved planning tasks
on the standard benchmark set.

For this chapter, let Π = 〈F ,O, sI , sG〉 denote a STRIPS planning task.

5.1 Structure of Fact-Alternating Mutex Group

The definition of fact-alternating mutex groups (fam-groups) is based on the applicability
of the operators rather than on a relation to all reachable states which makes it less
complex than the general mutex group (as will be demonstrated in Section 5.2).

Definition 5.1. A fact-alternating mutex group (fam-group) M ⊆ F is a set of
facts such that |M ∩ sI | ≤ 1 and |M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)| for every operator
o ∈ O. A fam-group that is not a subset of any other fam-group is called a maximal
fact-alternating mutex group (maximal fam-group).

Proposition 5.2. Every fact-alternating mutex group is a mutex group.

Proof. (By induction) The first part |M ∩ sI | ≤ 1 ensures a mutex group property of
M with respect to the initial state. Let s denote a state such that |M ∩ s| ≤ 1, i.e.,

23

24 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

the mutex group property holds with respect to s. Now, we need to make sure that
the mutex group property also holds for every state that is a resulting state from the
application of an applicable operator o on s, i.e., for all o ∈ O such that pre(o) ⊆ s
the inequality |M ∩ o[s]| ≤ 1 holds. Since |M ∩ s| ≤ 1 and pre(o) ⊆ s it follows that
|M ∩ pre(o)| ≤ 1 and, furthermore, |M ∩ pre(o) ∩ del(o)| ≤ 1. This means that three
cases must be investigated. First, if |M ∩ pre(o) ∩ del(o)| = 0, then |M ∩ add(o)| = 0
which means that no additional fact from M can be added to the resulting state and, thus,
|M ∩ o[s]| ≤ |M ∩ s| ≤ 1. Second, if |M ∩ pre(o) ∩ del(o)| = 1 and |M ∩ add(o)| = 0,
then the same holds. Third, if |M ∩ pre(o) ∩ del(o)| = 1 and |M ∩ add(o)| = 1, then
|M ∩ pre(o)| = 1, thus, |M ∩ s| = 1 (because pre(o) ⊆ s), so it follows that M ∩ pre(o) ∩
del(o) = M ∩ s ⊆ M ∩ del(o). This means that |M ∩ (s \ del(o))| = 0, so it follows that
|M ∩ o[s]| = |M ∩ ((s \ del(o)) ∪ add(o))| = 1, i.e., the mutex group property is preserved
in the third case as well. Finally, since the mutex group is defined for reachable states
RΠ, every fact-alternating mutex group must be a mutex group.

The name fact-alternating mutex group was chosen to stress its interesting property,
which lies in the mechanism by which facts from a fact-alternating mutex group appear
and disappear in particular states after the application of the operators. Consider some
fam-group M and some state s that does not contain any fact from M (M ∩ s = ∅).
Now we can ask whether any following state π[s] can contain any fact from M . The
answer is that it cannot because any operator o applicable in s that could add a new fact
from M to the following state o[s] would need to have a fact from M in its precondition
(M∩pre(o) 6= ∅) which is in contradiction with the assumption that s contains no fact from
M . So it follows that facts from each particular fact-alternating mutex group alternate
between each other as new states are created and once the facts disappear from the state
they cannot ever reappear again in any following state.

Formally, we first prove in Proposition 5.3 that if a state s does not contain any
fact from a fam-group M , then all facts from M are relaxed unreachable from s. This
also means that there is no point in looking for fam-groups that are disjoint from the
initial state, because these facts can be easily detected as unreachable by a simple relaxed
reachable analysis. Therefore we can safely use a more restricted constraint on the initial
state |M ∩ sI | = 1. Second, we prove in Proposition 5.4 the fact-alternating nature of
fam-groups, i.e., we show that if a state s is disjoint with a fam-group M , then all facts
from M are unreachable from s.

Proposition 5.3. Let M denote a fam-group and let s denote a state. If M ∩s = ∅, then
every f ∈M is relaxed unreachable from s.

Proof. (By contradiction) If M is relaxed reachable from s, then there exist two states
s′, s′′ and an operator o such that s′ is relaxed reachable from s, and s′ ∩ M = ∅,
and pre(o) ⊆ s′, and s′′ = s′ ∪ add(o), and s′′ ∩ M 6= ∅. Since |M ∩ add(o)| ≤
|M ∩ pre(o) ∩ del(o)| and pre(o) ∩M ⊆ s′ ∩M = ∅, we can conclude that s′′ ∩M = ∅.

Proposition 5.4. Let M denote a fam-group and let s denote a state. If |M ∩ s| = 0,
then every f ∈M is unreachable from s.

Proof. It follows directly from Proposition 5.3, because it is well-known that if a fact is
relaxed unreachable, then it is unreachable.

5.1. STRUCTURE OF FACT-ALTERNATING MUTEX GROUP 25

Interestingly, we can use Proposition 5.4 for the detection of dead-end states. A dead-
end state is a state from which it is impossible to reach any goal state by a sequence
of applied operators. Consider a fam-group M having a non-empty intersection with
the goal (|M ∩ sG| ≥ 1) and a reachable state s that does not contain any fact from
M (|M ∩ s| = 0). Such a state must be clearly a dead-end state, because it follows
from Proposition 5.4 that all states reachable from s, including the goal states, cannot
contain any fact from M , which is formally proven in the following simple corollary of
Proposition 5.4.

Corollary 5.5. Let M ⊆ F denote a set of facts and let s denote a state. If M is a
fam-group and |M ∩ sG| ≥ 1 and |M ∩ s| = 0, then s is a dead-end state.

Proof. From Proposition 5.4 and |M ∩ s| = 0 it follows that for every operator sequence
π applicable in s it holds that |M ∩ π[s]| = 0. Therefore since |M ∩ sG| ≥ 1, it follows
that sG 6⊆ π[s] which concludes the proof.

The operators that have more than one fact from some mutex group (and, therefore,
also from some fam-group) in its preconditions cannot be applicable in any reachable
state. Similarly, the operators with add effects containing more than one fact from some
mutex group (fam-group) are also unreachable, because the resulting state would be in
contradiction with the mutex group (fam-group).1 Such operators can be safely removed
from the planning task. These two simple rules are not limited to the fact-alternating
mutex groups, but they can be used with any type of mutex group.

However, fact-alternating mutex groups provide one additional method for pruning
superfluous operators. Consider a fam-group M having a non-empty intersection with
the goal and an operator o that does not have any fact from M in its add effects, but it
has a non-empty intersection with its preconditions, delete effects, and the fam-group M .
The resulting state of the application of the operator o would not contain any fact from the
fam-group M . Therefore, such a state would be a dead-end state for the reasons already
explained. This means that the operator o can be safely removed from the planning task
because it can only produce dead-end states. In other words, the states resulting from the
application of the operator are not useful in finding a plan and, therefore, the operator
itself is not useful too. This is formally proven in the following corollary.

Corollary 5.6. Let M ⊆ F denote a set of facts, let s denote a state and let o ∈
O denote an operator applicable in s. If M is a fam-group and |M ∩ sG| ≥ 1 and
|M ∩ pre(o) ∩ del(o)| ≥ 1 and |M ∩ add(o)| = 0, then o[s] is a dead-end state.

Proof. |M ∩ s| ≤ 1 because s is a reachable state, and pre(o) ⊆ s because o is applicable
in s. Moreover, since |M ∩ pre(o) ∩ del(o)| ≥ 1, it holds that |M ∩ s| = 1 and, thus,
M∩s = M∩pre(o) = M∩del(o) 6= ∅. Therefore, |M ∩ o[s]| = 0 because |M ∩ add(o)| = 0
and o[s] = (s\del(o))∪add(o). And finally from |M ∩ sG| ≥ 1 and Corollary 5.5 it follows
that o[s] is a dead-end state.

A list of selected mutex groups and fam-groups in the example planning task is shown
in Table 5.1. The maximal mutex groups and maximal fam-groups are marked with a
plus sign. As we have shown in Proposition 4.4 every subset of a mutex group is also a
mutex group. However, an interesting property of fam-groups is that not every subset of
this type of mutex group is also a fam-group, the reason is its strict definition. This also

1This is a special case of disambiguation proposed by Alcázar et al. (2013).

26 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

mutex group fam-group
{(at a)} 3 7
{(hungry)} 3 3
{(carry-food), (fed)} 3+ 7
{(at a), (at b)} 3 3+

{(at b), (at c)} 3 7
{(at a), (at b), (fed)} 3+ 7
{(at a), (at b), (at c)} 3+ 7
{(hungry), (fed)} 3+ 3+

{(hungry), (carry-food)} 7 7

Table 5.1: A list of selected mutex groups and fam-groups in the gorilla-feeding

planning task. Maximal mutex groups and maximal fam-groups are marked with a plus
sign.

means that even though it is always safe to consider a single fact to be a mutex group
this does not hold for fam-groups. For example, (at a) is not a fam-group because the
operator move-b-a has (at a) as its add effect, but it is not balanced by a delete effect
and it cannot be because operators are not allowed to have the same facts in its add and
delete effects. On the other hand, (hungry) is a fam-group because it is not listed as
an add effect of any operator. This observation can be generalized and we can say that
a singleton is a fam-group if and only if it does not appear in any add effect, which we
formally prove in the following proposition.

Proposition 5.7. Let f ∈ F denote a single fact. {f} is a fam-group iff f 6∈ add(o) for
every operator o ∈ O.

Proof. First, we prove the direction from left to right by contradiction. Assuming there
exists an operator o such that f ∈ add(o), also f ∈ pre(o) must hold, because the in-
equality |{f} ∩ add(o)| ≤ |{f} ∩ pre(o) ∩ del(o)| must hold. This is in contradiction with
the assumption add(o) ∩ pre(o) = ∅ (Definition 3.1). Similarly, to prove the other di-
rection by contradiction, we assume that {f} is not a fam-group. Since |{f} ∩ sI | ≤ 1
always holds, the inequality |{f} ∩ add(o)| > |{f} ∩ pre(o) ∩ del(o)| must hold. There-
fore, |{f} ∩ add(o)| ≥ 1, therefore, {f} ∈ add(o), which is contradiction.

The facts (carry-food) and (fed) do not form a fam-group because of the operator
take-food which adds the (carry-food) fact, but does not delete the (fed) fact. This
is exactly the type of mutex group that is not covered by the fact-alternating mutex group
because the facts from this mutex group appear in the state seemingly from nothing, i.e.,
the facts do not alternate between each other, but their appearance is conditional on some
other fact that is not part of the mutex group.

The maximal mutex groups and maximal fam-groups are those that cannot be ex-
tended by any fact and still remain mutex groups and fam-groups, respectively. Therefore
all other mutex groups or fam-groups are already contained within the maximal ones, but
we need to be careful while considering classification of the subsets of the maximal mutex
groups or fam-groups. It is obviously true that every subset of a maximal mutex group
is also a mutex group. Nevertheless, not every subset of a maximal fam-group is also a
fam-group.

For example, {(at a), (at b), (at c)} is a maximal mutex group and, therefore,
{(at a), (at b)} and {(at b), (at c)} are mutex groups. However, {(at a), (at b)}

5.2. COMPLEXITY ANALYSIS 27

is a maximal fam-group, but {(at a)} is not a fam-group as discussed above. Moreover,
{(at a), (at b), (at c)} is not a fam-group, because of the operator escape, which adds
(at c) without balancing it by (at a) or (at b). But even if we remove the operator
escape and, therefore, {(at a), (at b), (at c)} becomes a maximal fam-group, its
subset {(at b), (at c)} still would not be a fam-group. The set {(hungry), (fed)}
is both a maximal mutex group and a maximal fam-group, although {(fed)} is not a
fam-group, but {(hungry)} is a fam-group.

The example planning task also demonstrates how fam-groups can be useful in dealing
with dead-end states. The operator escape always produces a dead-end state. According
to Corollary 5.6, the fam-group {(hungry), (fed)} can be used to remove this operator,
because (fed) is a part of the goal specification and the operator removes (hungry) but
does not add (fed). In other words, {(hungry), (fed)} is a fam-group and (fed) must
be a part of every goal state, therefore, the facts (hungry) and (fed) must alternate
between each other in all states between the initial state and the goal state. Therefore,
since the resulting state of application of escape does not contain any of those two facts,
the operator escape cannot be part of any operator sequence leading from the initial
state to a goal state. Note also that Corollary 5.6 is not limited to maximal fam-groups.

5.2 Complexity Analysis

The complexity analysis of fam-groups follows the complexity analysis from Section 4.2
in that we investigate the complexity of finding a maximum sized fam-group.

Definition 5.8. Let M denote a set of all fam-groups. M is a maximum fam-group
iff M ∈M and |M | ≥ |N | for every N ∈M.

Definition 5.9. Maximum-FAM-Group decision problem: Given a planning task Π
and an integer k, does Π contain a fam-group of size at least k?

To prove that Maximum-FAM-Group is NP-Hard, we use a reduction from the
decision problem corresponding to finding a maximum sized clique in a graph.

Definition 5.10. Maximum-Clique decision problem: Given a graph G and an
integer k, does G contain a clique of size at least k?

Definition 5.11. Given an undirected simple graph G = 〈V,E〉, ΠG = 〈FG,OG, sGI , ∅〉
denotes a planning task where FG = {fv | v ∈ V } ∪ {>}, sGI = {>}, and OG =
{ov,v′ | {v, v′} ⊆ V, v 6= v′, {v, v′} 6∈ E} with pre(ov,v′) = {>}, del(ov,v′) = {>}, and
add(ov,v′) = {fv, fv′}.

For a given set of vertices C ⊆ V , FG(C) = {fv | v ∈ C} denotes the corresponding
set of facts in ΠG.

The Maximum-Clique problem is a well known NP-Complete decision problem
(Karp, 1972), which we use to show that the Maximum-FAM-Group is NP-Hard. The
reduction from Maximum-Clique is made by translating a graph G into a planning
task ΠG (Definition 5.11) in a polynomial time. After the translation, it is shown that
Maximum-Clique for G can be solved by solving Maximum-FAM-Group for ΠG. In
other words, we show that the fam-group decision problem is at least as hard as some
NP-Complete problem, in this case Maximum-Clique.

28 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

Proving that the Maximum-FAM-Group belongs to NP is much easier, because the
definition of fam-groups provides a verification algorithm running in polynomial time,
which concludes the proof that the Maximum-FAM-Group is NP-Complete (Theo-
rem 5.14). Moreover, it follows from the polynomial reduction, as we propose it, that
the maximum possible number of maximal fam-groups is exponential in the number of
facts of the corresponding planning task (Lemma 5.15). This allows us to show that the
maximum number of both maximal mutex groups and maximal fam-groups is the same as
the maximum number of maximal cliques in a graph, and we express this number exactly
(Proposition 5.16).

The main idea behind the way ΠG is constructed from G, is the following. Consider
a complete graph. In such a graph, all vertices form one maximal clique together and by
gradual removal of the edges from the graph, the original clique is divided into more cliques
consisting of a smaller number of vertices. Similarly, consider a planning task having only
one fact in the initial state and without any operator. In such a planning task, all facts
form one maximal fam-group together. This fam-group can be divided into smaller ones
by adding new operators having facts that should not be part of the same fam-group,
into their add effects, without balancing them by delete effects and preconditions. So
following this idea, the algorithm constructs the resulting planning task in such a way
that the operators’ add effects correspond to the pair of vertices in the original graph
that are not connected by any edge. Therefore, they cannot be in the same clique and
the operators make sure that they cannot also be in the same fam-group. The additional
auxiliary fact > is added to make sure that all operators are applicable in the initial state,
thus, effects of the operators are reachable.

The proof that the Maximum-FAM-Group is NP-Complete starts with some auxil-
iary lemmas. Lemma 5.12 shows that we can translate a graph G into the corresponding
planning task ΠG and all cliques (including the maximum ones) are preserved during the
translation in the form of fam-groups. More precisely, it is shown that if C is a clique in
G, then the corresponding fam-group in ΠG can be constructed as FG(C)∪{>} and also
that every fam-group in ΠG containing > corresponds to a clique in the original graph G.

The remaining piece of the proof of correctness of the polynomial reduction from
the Maximum-Clique problem is to show that there are no maximum fam-groups that
do not contain >, i.e., we must show that if we find a maximum fam-group, then we
can reconstruct a maximum clique in the original graph G from it and, therefore, the
Maximum-Clique problem can be solved by solving the the Maximum-FAM-Group.
In Lemma 5.13, we prove an even stronger statement saying that not only all maximum
fam-groups, but all maximal fam-groups contain >. Therefore, Lemma 5.12 can be safely
used to prove that the polynomial reduction from the Maximum-Clique problem is
correct, thus, the Maximum-FAM-Group is NP-Hard.

The main contribution of this section is formulated in Theorem 5.14 stating that
the Maximum-FAM-Group is NP-Complete. Once we have proven that the decision
problem is NP-Hard then it easily follows that it must be NP-Complete because any fam-
group can be verified in a polynomial number of steps by checking the initial state and
all operators.

Lemma 5.12. C is a clique in G iff M = FG(C) ∪ {>} is a fam-group in ΠG.

Proof. To prove the direction from left to right by contradiction, let us assume that C is
a clique and M is not a fam-group. Since sGI = {>} ⊆ M and |M ∩ pre(o) ∩ del(o)| = 1
for every operator o ∈ OG (because pre(o) = del(o) = {>}) there must exist an operator

5.2. COMPLEXITY ANALYSIS 29

o′ ∈ OG such that |M ∩ add(o′)| > 1. Since > is not part of any add effect and all
add effects contain exactly two facts, it must hold that add(o′) ⊆ FG(C). This is in
contradiction with the assumption that C is a clique because all add effects are created
only from the pairs of vertices that are not joined by an edge and there is no such pair of
vertices in C by definition. Therefore, if C is a clique, then M is a fam-group.

To prove the other direction, also by contradiction, let us assume that M = FG(C) ∪
{>} is a fam-group and C is not a clique. If C is not a clique then there exist v, v′ ∈ C such
that v and v′ are not connected by an edge in G. So it follows that there exists an operator
o ∈ OG such that add(o) = {fv, fv′} and pre(o) = del(o) = {>}, therefore, |M ∩ add(o)| =
2 > |M ∩ pre(o) ∩ del(o)| = 1. This is in contradiction with the assumption that M is a
fam-group, therefore, if M is a fam-group then C is a clique.

Lemma 5.13. For every maximal fam-group M in ΠG it holds that > ∈M .

Proof. Let N denote a fam-group such that > 6∈ N . Now we prove that M = {>} ∪ N
is also a fam-group. Since sGI = {>}, then surely

∣∣M ∩ sGI ∣∣ ≤ 1. For every opera-
tor o ∈ OG it holds that pre(o) = del(o) = {>} and > 6∈ add(o) and |N ∩ add(o)| ≤
|N ∩ pre(o) ∩ del(o)|. So, it follows that |N ∩ add(o)| = |N ∩ pre(o) ∩ del(o)| = 0, there-
fore, |M ∩ add(o)| = 0 ≤ |M ∩ pre(o) ∩ del(o)| = 1, therefore, M is a fam-group. Finally,
since every fam-group can be extended by >, then surely every maximal fam-group must
contain >.

Theorem 5.14. Maximum-FAM-Group is NP-Complete.

Proof. To show that the Maximum-FAM-Group is NP-Hard, we will reduce Maximum-
Clique to the Maximum-FAM-Group. Clearly, any graph G can be translated into a
planning task ΠG in polynomial time, namely O(n2), where n is the number of vertices
in G. From Lemma 5.13, it follows that a maximum fam-group must contain > and then
it follows from Lemma 5.12 that C is a maximum clique in G iff M = F (C) ∪ {>} is a
maximum fam-group in ΠG. Therefore, the Maximum-FAM-Group is NP-Hard.

What remains is to show that the Maximum-FAM-Group is in NP. It is easy to see
that given a set of facts it can be verified as a fam-group by checking the initial state and
all operators according to Definition 5.1. The verification procedure runs in a polynomial
number of steps in a number of facts and operators. Therefore, the Maximum-FAM-
Group is NP-Complete.

The following lemma states that the maximum number of maximal fam-groups is
exponential in the number of facts. The proof is based on the proposed procedure that
can translate any graph into a planning task in such a way that every maximal fam-group
corresponds to a maximal clique in the original graph. This enables us to enumerate the
lower bound on the maximum possible number of maximal fam-groups as the maximum
possible number of maximal cliques.

Lemma 5.15. The maximum possible number of maximal fam-groups in a planning task
Π is exponential in a number of facts.

Proof. It follows from Lemma 5.12 and Lemma 5.13 that for every possible graph, it is
possible to construct a planning task in which every maximal fam-group corresponds to
some maximal clique and vice versa. The maximum possible number of maximal cliques
in a graph is exponential in a number of vertices (namely c · 3n/3 where n is number of
vertices and c ∈ {1, 4/3, 2} depending on n mod 3) (Moon & Moser, 1965). This makes

30 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

the lower bound exponential. The upper bound is the maximum number of subsets of F ,
which is also exponential (2|F|). This makes the maximum possible number of maximal
fam-groups exponential in a number of facts.

It follows from Proposition 4.6 that given a complete list of all mutex pairs, all maxi-
mal mutex groups can be constructed using an algorithm for listing all maximal cliques.
This means that the maximum possible number of maximal mutex groups is exactly the
same as the maximum possible number of maximal cliques. Furthermore, since the same
number is the lower bound on the maximum possible number of maximal fam-groups and
since every fam-group is also a mutex group, the maximum possible number of maximal
mutex groups and maximal fam-groups are exactly the same, which we formally prove in
Proposition 5.16.

Proposition 5.16. Let Π = 〈F ,O, sI , sG〉 denote a planning task and let n = |F| denote
a number of facts in Π. The maximum possible number µ(n) and µfa(n) of maximal mutex
groups and maximal fam-groups, respectively, for n ≥ 2, is the following:

µ(n) = µfa(n) =

3n/3, if n mod 3 = 0;

4
3
· 3n/3, if n mod 3 = 1;

2 · 3n/3, if n mod 3 = 2.

Proof. It follows from Proposition 4.6 that all maximal mutex groups can be constructed
from a complete set of mutex pairs using an algorithm for the enumeration of all maximal
cliques. Moreover, it is easy to see that given a set of facts, it is always possible to
construct a planning task that would contain any combination of mutex pairs. It follows
from the proof of Lemma 5.15 that the same holds for maximal fam-groups. This means
that the maximum possible number of maximal mutex groups and maximal fam-groups in
a planning task is exactly the same as the maximum possible number of maximal cliques
in a graph (Moon & Moser, 1965).

5.3 h2-mutexes and Fact-Alternating Mutex Groups

On one hand, we have shown that the inference of mutex groups in general case is PSPACE-
Complete, that every mutex group can be decomposed into a set of mutex pairs, and that
the inference of mutex pairs is also PSPACE-Complete. On the other hand, we have shown
that the inference of fact-alternating mutex groups is only NP-Complete, and since every
fam-group is a mutex group, it can also be decomposed into a set of mutex pairs. So,
in this section, we answer the question how hard it is to infer mutex pairs that form
fam-groups.

The family of hm heuristics (Haslum & Geffner, 2000) is the most commonly used
method for the inference of mutexes. The complexity of the computation of hm heuristics
grows exponentially with m, but it is polynomial for a fixed m. The h1 heuristic corre-
sponds to the hmax heuristic and it can infer only unreachable facts, the h2 heuristic can
infer also mutex pairs, the h3 also mutexes of size three and so on. In this section, we
show that h2 always produces a (possibly non-strict) superset of decomposition of all fam-
groups. More precisely, we will prove that any mutex pair that is a subset of a fam-group
must be a mutex pair inferred by h2 (h2-mutex), but not the other way around. This
also means that if we infer h2-mutexes and use an algorithm for listing maximal cliques
to join the h2-mutexes into larger mutex groups (similarly as it is used in Algorithm 4.1),

5.3. H2-MUTEXES AND FACT-ALTERNATING MUTEX GROUPS 31

then the resulting mutex groups will be non-strict supersets of fam-groups. However, the
mutex groups created from h2-mutexes do not have the same properties as fam-groups
described in Proposition 5.4, Corollary 5.5 and Corollary 5.6. The importance of fam-
groups, in particular its ability to detect operators that can produce only dead-end states,
is demonstrated in Chapter 6.

The formal definition of an h2-mutex below is based on an alternative characterization
of the hm heuristic using a modified planning task introduced by Haslum (2009). In our
opinion, this formulation leads to a more straightforward line of proof than the original
definition by a recursive equation and regression operators.

Definition 5.17. Let Π = 〈F ,O, sI , sG〉 denote a planning task. The planning task
Π2 = 〈Φ,Ω, ψinit , {}〉 consists of a set of facts Φ = {φc | c ⊆ F , |c| ≤ 2}, a set of operators
Ω, an initial state ψinit = {φc | c ⊆ sI , |c| ≤ 2}, and an empty goal specification. For each
operator o ∈ O, the planning task Π2 contains an operator ωo,∅ ∈ Ω with

pre(ωo,∅) = {φc | c ⊆ pre(o), |c| ≤ 2},
add(ωo,∅) = {φc | c ⊆ add(o), |c| ≤ 2},
del(ωo,∅) = ∅,

and additionally, for each operator o ∈ O and each fact f ∈ F such that f 6∈ add(o) ∪
del(o), the planning task Π2 contains an operator ωo,f ∈ Ω with

pre(ωo,f) = pre(ωo,∅) ∪ {φ{f}} ∪ {φ{g,f} | g ∈ pre(o), g 6= f},
add(ωo,f) = add(ωo,∅) ∪ {φ{g,f} | g ∈ add(o)},
del(ωo,f) = ∅.

Let Ψ denote a set of all reachable states in Π2. A pair of facts {f1, f2} ⊆ F such that
f1 6= f2 is an h2-mutex iff for every reachable state ψ ∈ Ψ, it holds that φ{f1,f2} 6∈ ψ.

The Π2 planning task is an ordinary STRIPS planning task (Definition 3.1), but we
have decided to use Greek letters to describe its parts to prevent confusion between the
parts of the original planning task Π and the parts of Π2 which is constructed from Π.
Note also that contrary to the original formulation by Haslum, Π2 has an empty goal
specification. The reason is that we do not need a goal specification because we are not
interested in the h2 heuristic, but only in the h2-mutexes resulting from the reachability
of facts of the planning task.

Also note the difference between our construction of operators in Π2 and how Haslum
defined the operators. Haslum uses a single formula for preconditions and effects (Haslum,
2009, Definition 4). So in our notation, the definition would be the following. For each
operator o ∈ O and for each subset of facts g ⊆ F such that |g| ≤ 1 and g is disjoint with
add(o) and del(o), create a new operator ωo,g with: pre(ωo,g) = {φc | c ⊆ (pre(o)∪g), |c| ≤
2}, add(ωo,g) = {φc | c ⊆ (add(o) ∪ g), c ∩ add(o) 6= ∅, |c| ≤ 2}, del(ωo,g) = ∅. We,
however, decided to split the definition of operators between those that are direct images
of the original operators (ωo,∅) and those that are extended by an additional fact in its
preconditions and add effects (ωo,f). The reason is that it, in our opinion, considerably
simplifies the proofs, because it is more obvious how ωo,∅ differs from its extensions ωo,f .

The main result of this section, stating that every mutex pair that is part of a fam-
group is an h2-mutex, is stated in Theorem 5.20 which is preceded by two auxiliary
lemmas.

Lemma 5.18. Let ΣX = {φc | c ⊆ X, |c| = 2}, where X ⊆ F , and let A,B ⊆ F .
ΣA ∩ ΣB = ΣA∩B.

Proof. (By contradiction) If ΣA ∩ ΣB 6= ΣA∩B then two cases must be investigated: (i)
There exists φ{f1,f2} such that φ{f1,f2} ∈ ΣA ∩ ΣB and φ{f1,f2} 6∈ ΣA∩B. So it follows that

32 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

f1, f2 ∈ A and f1, f2 ∈ B and f1, f2 6∈ A ∩ B, which is contradiction. (ii) There exists
φ{f1,f2} such that φ{f1,f2} 6∈ ΣA∩ΣB and φ{f1,f2} ∈ ΣA∩B. So it follows that f1, f2 ∈ A∩B,
therefore f1, f2 ∈ A and f1, f2 ∈ B, therefore φ{f1,f2} ∈ ΣA and φ{f1,f2} ∈ ΣB, which is
contradiction.

Lemma 5.19. Let ΣX = {φc | c ⊆ X, |c| = 2}, where X ⊆ F , and let M ⊆ F denote a
set of facts in Π such that |M | ≥ 2. If M is a fam-group then |ΣM ∩ ψinit | = 0 and for
every operator ω ∈ Ω it holds that |ΣM ∩ add(ω)| ≤ |ΣM ∩ pre(ω)|.

Proof. Since ψinit is created from sI and |M ∩ sI | ≤ 1 then it is easy to see that |ΣM ∩ ψinit | =
0 must hold.

Now we prove |ΣM ∩ add(ω)| ≤ |ΣM ∩ pre(ω)| separately for operators ωo,∅ and for
the rest of the operators. But first, we start with some preliminaries. It is easy to see that
given a set of facts A ⊆ F : |ΣA| = C2(|A|), where Ck(n) = n!

k!(n−k)!
is a binomial coefficient

for n ≥ k ≥ 0 and Ck(n) = 0 for 0 ≤ n < k. Let pre2(ω) = {φc | φc ∈ pre(ω), |c| = 2},
and add2(ω) = {φc | φc ∈ add(ω), |c| = 2}. Since ΣM contains only facts φc where |c| = 2,
the inequality |ΣM ∩ add(ω)| ≤ |ΣM ∩ pre(ω)| holds iff

∣∣ΣM ∩ add2(ω)
∣∣ ≤ |ΣM ∩ pre2(ω)|

holds.
From Definition 5.17 it follows that for every operator o ∈ O: pre2(ωo,∅) = Σpre(o)

and add2(ωo,∅) = Σadd(o), therefore we need to prove that
∣∣ΣM ∩ Σadd(o)

∣∣ ≤ ∣∣ΣM ∩ Σpre(o)

∣∣,
which can be rewritten as

∣∣ΣM∩add(o)

∣∣ ≤ ∣∣ΣM∩pre(o)

∣∣ (Lemma 5.18), and further C2(|M ∩
add(o)|) ≤ C2(|M∩pre(o)|). SinceM is a fam-group, |M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)|,
which implies |M ∩ add(o)| ≤ |M ∩ pre(o)|, therefore inequality C2(|M ∩ add(o)|) ≤
C2(|M ∩ pre(o)|) holds, because C2(n) is an increasing function.

Let Γpre(o),f = {φ{g,f} | g ∈ pre(o), g 6= f}, and Γadd(o),f = {φ{g,f} | g ∈ add(o)}. For
the remaining operators ωo,f ∈ Ω\{ωo,∅ | o ∈ O} it holds that pre2(ωo,f) = Σpre(o)∪Γpre(o),f

and add2(ωo,f) = Σadd(o) ∪ Γadd(o),f . Now two cases need to be investigated.
(1) If f 6∈ M then obviously ΣM ∩ Γadd(o),f = ΣM ∩ Γpre(o),f = ∅, therefore ΣM ∩

add2(ωo,f) = ΣM ∩ add2(ωo,∅) and ΣM ∩ pre2(ωo,f) = ΣM ∩ pre2(ωo,∅). So it follows that∣∣ΣM ∩ add2(ωo,f)
∣∣ ≤ |ΣM ∩ pre2(ωo,f)|, because

∣∣ΣM ∩ add2(ωo,∅)
∣∣ ≤ |ΣM ∩ pre2(ωo,∅)|.

(2) If f ∈ M then
∣∣ΣM ∩ Γadd(o),f

∣∣ = |M ∩ add(o)|, because f 6∈ add(o) by definition.
And

∣∣ΣM ∩ (Σadd(o) ∪ Γadd(o),f)
∣∣ =

∣∣ΣM ∩ Σadd(o)

∣∣ +
∣∣ΣM ∩ Γadd(o),f

∣∣, because Σadd(o) and
Γadd(o),f are disjunct. Now two more cases need to be investigated.

(2.1) If f 6∈ pre(o) then
∣∣ΣM ∩ Γpre(o),f

∣∣ = |M ∩ pre(o)|, therefore
∣∣ΣM ∩ Γadd(o),f

∣∣ ≤∣∣ΣM ∩ Γpre(o),f

∣∣, because |M ∩ add(o)| ≤ |M ∩ pre(o)|. Furthermore, since f 6∈ pre(o),∣∣ΣM ∩ (Σpre(o) ∪ Γpre(o),f)
∣∣ =

∣∣ΣM ∩ Σpre(o)

∣∣+
∣∣ΣM ∩ Γpre(o),f

∣∣, because Σpre(o) and Γpre(o),f

are disjunct. So it follows from
∣∣ΣM ∩ Σadd(o)

∣∣ ≤ ∣∣ΣM ∩ Σpre(o)

∣∣ and
∣∣ΣM ∩ Γadd(o),f

∣∣ ≤∣∣ΣM ∩ Γpre(o),f

∣∣, that
∣∣ΣM ∩ Σadd(o)

∣∣+ ∣∣ΣM ∩ Γadd(o),f

∣∣ ≤ ∣∣ΣM ∩ Σpre(o)

∣∣+ ∣∣ΣM ∩ Γpre(o),f

∣∣,
therefore

∣∣ΣM ∩ add2(ωo,f)
∣∣ ≤ |ΣM ∩ pre2(ωo,f)|.

(2.2) If f ∈ pre(o) then pre2(ωo,f) = pre2(ωo,∅) = Σpre(o) = Σpre(o)\{f} ∪ Γpre(o),f , and
|ΣM ∩ pre2(ωo,f)| =

∣∣ΣM ∩ (Σpre(o)\{f} ∪ Γpre(o),f)
∣∣ =

∣∣ΣM ∩ Σpre(o)\{f}
∣∣ +

∣∣ΣM ∩ Γpre(o),f

∣∣
(Σpre(o)\{f} and Γpre(o),f are disjunct), and

∣∣ΣM ∩ Γpre(o),f

∣∣ = |M ∩ (pre(o) \ {f})|. Also
|M ∩ add(o)| ≤ |M ∩ (pre(o) \ {f})|, because |M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)| and
f 6∈ add(o) and f 6∈ del(o) (Definition 5.17). Therefore similarly to (2.1),

∣∣ΣM ∩ Σadd(o)

∣∣+∣∣ΣM ∩ Γadd(o),f

∣∣ ≤ ∣∣ΣM ∩ Σpre(o)\{f}
∣∣ +

∣∣ΣM ∩ Γpre(o),f

∣∣, therefore
∣∣ΣM ∩ add2(ωo,f)

∣∣ ≤
|ΣM ∩ pre2(ωo,f)|.

Theorem 5.20. Let M ⊆ F denote a set of facts such that |M | ≥ 2 and let H = {p | p ⊆
M, |p| = 2}. If M is a fam-group, then every h ∈ H is an h2-mutex.

5.4. INFERENCE OF FACT-ALTERNATING MUTEX GROUPS 33

Proof. (By induction) Let Ψ denote a set of all reachable states in Π2 and let ΣM =
{φh | h ∈ H}. It follows from Lemma 5.19 that |ΣM ∩ ψinit | = 0. Now, we need to prove
that for any reachable state ψ ∈ Ψ and every operator ω ∈ Ω applicable in ψ it holds
that if |ΣM ∩ ψ| = 0, then |ΣM ∩ ω[ψ]| = 0. For every operator ω applicable in ψ it
holds that pre(ω) ⊆ ψ and, therefore, |ΣM ∩ pre(ω)| = 0. So it follows from Lemma 5.19
that also |ΣM ∩ add(ω)| = 0 because |ΣM ∩ add(ω)| ≤ |ΣM ∩ pre(ω)|. Finally, since
ω[ψ] = (ψ \ del(ω)) ∪ add(ω) it must follow that |ΣM ∩ ω[ψ]| = 0, therefore, there is no
reachable state ψ ∈ Ψ containing any fact from ΣM which means that every h ∈ H is an
h2-mutex.

To show that the implication in the other direction than stated in Theorem 5.20 does
not hold, i.e., that there can be an h2-mutex that is not a subset of any fam-group, we can
get back to our example planning task. The pair of facts {(carry-food), (fed)} is an
h2-mutex, but this pair of facts cannot be part of any fam-group, because (carry-food)

cannot be balanced in the operator take-food by any other fact since take-food has
empty delete effects.

5.4 Inference of Fact-Alternating Mutex Groups

In this section, we describe an algorithm for the inference of fam-groups. The main part
of the algorithm consists of an integer linear program (ILP) based on the definition of
fact-alternating mutex groups (Definition 5.1) rewritten into a set of constraints. The
ILP is constructed in the following way.

Each variable xi of the ILP corresponds to a fact fi ∈ F from the planning task.
Variables can acquire binary values 0 or 1 only, 0 meaning that the corresponding fact is
not present in the fam-group and 1 meaning the corresponding fact is part of the fam-
group. For example having three facts f1, f2, f3, the corresponding ILP would consist of
three binary variables x1, x2, x3 and an assignment of the variables x1 = 1, x2 = 0, x3 = 1
would mean that the fam-group M consists of facts f1 and f3 (M = {f1, f3}).

The definition of a fact-alternating mutex group can be rewritten into ILP constraints
as follows: ∑

fi∈sI

xi ≤ 1, (5.1)

∀o ∈ O :
∑

fi∈add(o)

xi ≤
∑

fi∈del(o)∩pre(o)

xi. (5.2)

Equation (5.1) is a constraint saying that the initial state must have at most one
common fact with the fam-group and corresponds to the first condition in Definition 5.1
(|M ∩ sI | ≤ 1). Equation (5.2) corresponds to the second part of the definition (|M ∩
add(o)| ≤ |M ∩ pre(o) ∩ del(o)|) and it ensures that the mutex property is preserved by
all operators.

The objective function of the ILP is to maximize
∑

fi∈F xi. The maximization enforces
the inference of a fam-group containing the maximum possible number of facts.

Unfortunately, the solution to this ILP is only one fam-group, so some mechanism
enabling inference of all fact-alternating mutex groups is required. This drawback can
be resolved by solving the ILP repeatedly, each time with added constraints that exclude

34 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

already inferred fam-groups. Let M denote a known fam-group. Such a fam-group and
all its subsets can be excluded from the ILP solution by adding the constraint∑

fi 6∈M

xi ≥ 1. (5.3)

The constraint forces the ILP solver to add a fact to the solution that is not present
in the known fam-group M and, thus, excluding M and all its subsets. In other words,
since we are not interested in the fam-group M and its subsets, we know that any other
fam-group must contain a fact that is not a part of M .

Algorithm 5.1: Inference of fact-alternating mutex groups using ILP.

Input: Planning task Π = 〈F ,O, sI , sG〉
Output: A set of fam-groups M

1 Initialize ILP with constraints according to Equations (5.1) and (5.2);
2 Set objective function of ILP to maximize

∑
fi∈F xi;

3 Solve ILP and save the resulting fam-group into M ;
4 while |M | ≥ 1 do
5 Add M to the output set M;
6 Add constraint according to Equation (5.3) using M ;
7 M ← ∅;
8 Solve ILP and if a solution was found, save the resulting fam-group into M ;

The whole fam-group inferring algorithm is encapsulated in Algorithm 5.1. First, the
ILP constraints are constructed according to Equations (5.1) and (5.2), which ensures
that the solutions of the ILP will be fact-alternating mutex groups. Then, in turn, a
maximal fam-group is inferred through the ILP solution and consequently removed from
future solutions using the added constraint corresponding to Equation (5.3). The cycle
continues until the inferred fam-groups consist of, at least, one fact. Since a maximal fam-
group is produced at each step, arriving at smaller and smaller fam-groups means that the
algorithm eventually terminates. The combination of the maximization and removal of
the found fam-groups and all theirs subsets from the solutions in the following steps also
ensures that every produced fam-group is unique and it is never a subset of any already
found fam-group.

Theorem 5.21. Algorithm 5.1 is complete with respect to the maximal fact-alternating
mutex groups.

Proof. To prove Theorem 5.21 by contradiction, let us assume that Algorithm 5.1 was
terminated and it produced a set of fam-groups, and let us assume that there exists a
fam-group M that is not a subset of any fam-group produced by Algorithm 5.1. Such a
fam-group must satisfy the constraints expressed by Equations (5.1) and (5.2) and it must
contain, at least, one fact that is not part of any fam-group produced by Algorithm 5.1.
This is not violated by the ILP constraints in the last cycle of Algorithm 5.1 because
they consist of Equations (5.1) and (5.2) and a set of Equation (5.3) constraints that
force the next fam-group to include a fact that is not part of any fam-group found so far.
This means that Algorithm 5.1 could not terminate, thus, such an M does not exist and
Algorithm 5.1 is complete with respect to maximal fact-alternating mutex groups.

Note that Equation (5.3) can be used for the exclusion of any set of facts. This
means that Algorithm 5.1 can be initialized with any set of mutex groups obtained by

5.5. EXPERIMENTAL EVALUATION 35

any other method. Therefore, if there is a faster but incomplete alternative available for
the inference of fam-groups, the fam-groups inferred by that method can be used for the
initialization of Algorithm 5.1. This could speed up the running time of the inference
algorithm while preserving its completeness.

Furthermore, the algorithm can be easily altered to an any-time algorithm just by
setting a limit on the number of cycles or by the premature stopping of the computation
after some time limit, because the algorithm produces one correct fam-group per cycle.

5.5 Experimental Evaluation

All algorithms experimentally evaluated in this section were implemented2 in C. The
experiments ran on a cluster of computing nodes with Intel Xeon Scalable Gold 6146
processors. The memory limit was set to 8 GB RAM, and the time limit was set to
one hour for all compared variants and all related computations (such as mutex group
cover number described in Section 5.5.2) together. The algorithms were evaluated on
all domains from the optimal and satisficing deterministic tracks of the International
Planning Competition (IPC) from 1998 to 2018 that do not contain any conditional
effects after grounding.

The algorithm for inference of fam-groups (Algorithm 5.1) was implemented using a
CPLEX ILP solver (v12.6.1.0) running with default configuration in one thread. We will
refer to this algorithm as fam. It is compared to two different methods for inferring mutex
groups. One is the inference algorithm implemented in the Fast Downward’s preprocessor
(Helmert, 2009), abbreviated by fd. The other state-of-the-art algorithm that we use
for comparison is the h2 heuristic (Haslum & Geffner, 2000). The relationship between
h2-mutexes and fam-groups was already discussed in Section 5.3.

The presented algorithms are experimentally evaluated in several different ways. The
algorithms are compared in terms of mutex pairs (Section 5.5.1), because the decom-
position of the inferred mutex groups into a set of mutex pairs allows us to compare
the algorithms without considering the differences in the shapes and sizes of the mutex
groups. In Section 5.5.2, the algorithms are compared with respect to the mutex groups
as they were inferred. In Section 5.5.3, the running times of the inference algorithms are
compared and a faster version of fam is introduced. Lastly, utilization of mutex groups
in a translation to finite domain representation is evaluated in Section 5.5.4.

5.5.1 Comparison of Mutex Pairs

Any mutex group can be decomposed into a set of mutex pairs by enumerating all pairs
of facts the original mutex group consists of. Such a decomposition provides a common
base for comparing the algorithms in terms of inferred mutex pairs. For example, h2 is
able to produce mutex pairs only, but fam is designed to produce maximal fam-groups.
The pair decomposition provides a transparent method for comparing these two and all
other algorithms for the inference of mutex groups.

On the other hand, this method of comparison clouds the fact that fd and fam both
provide a richer structure than just a set of mutex pairs. Although it is always possible
to reconstruct back any mutex group from its pair decomposition using some algorithm
for enumerating maximal cliques, it must be taken into account that the reconstruction

2https://gitlab.com/danfis/cpddl

36 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

domain #mutex pairs ratio to h2

fd fam h2 fd fam
agricola (34) 10 170 49 795 141 244 0.07 0.35
airport (3) 506 624 3 445 0.15 0.18
barman (74) 14 979 137 229 152 059 0.10 0.90
blocks (35) 59 766 59 766 109 327 0.55 0.55
caldera (40) 17 402 37 956 37 956 0.46 1.00
cavediving (40) 12 608 136 602 183 020 0.07 0.75
childsnack (40) 9 347 9 347 9 347 1.00 1.00
cybersec (30) 9 876 841 402 2 396 394 0.00 0.35
data-network (40) 15 379 15 379 15 379 1.00 1.00
depot (22) 208 628 209 896 328 039 0.64 0.64
driverlog (20) 90 681 90 681 90 681 1.00 1.00
elevators (100) 714 069 714 069 714 069 1.00 1.00
floortile (80) 112 847 112 847 112 847 1.00 1.00
freecell (80) 72 702 166 902 199 996 0.36 0.83
ged (33) 442 256 442 256 450 165 0.98 0.98
gripper (20) 16 480 16 480 16 480 1.00 1.00
hiking (40) 7 371 7 371 7 371 1.00 1.00
logistics (62) 7 985 312 7 985 312 7 985 312 1.00 1.00
maintenance (25) 0 6 6 0.00 1.00
movie (30) 0 0 0 – –
mprime (35) 160 606 161 234 258 806 0.62 0.62
mystery (30) 126 381 134 529 1 563 029 0.08 0.09
nomystery (40) 590 997 592 797 716 283 0.83 0.83
openstacks (167) 815 020 815 020 1 210 002 0.67 0.67
organic-synthesis (10) 0 1 087 6 163 0.00 0.18
parcprinter (70) 63 249 130 761 239 933 0.26 0.54
parking (80) 2 806 194 2 806 194 4 177 265 0.67 0.67
pathways (30) 7 948 7 948 38 396 0.21 0.21
pegsol (70) 40 812 42 985 53 564 0.76 0.80
pipesworld-notankage (38) 41 000 52 608 370 776 0.11 0.14
pipesworld-tankage (38) 122 005 195 190 404 819 0.30 0.48
psr-small (50) 3 016 3 016 5 836 0.52 0.52
rovers (40) 496 910 496 915 498 302 1.00 1.00
satellite (36) 1 844 272 1 845 356 1 845 356 1.00 1.00
scanalyzer (70) 120 324 127 980 128 172 0.94 1.00
snake (31) 51 023 85 197 95 024 0.54 0.90
sokoban (100) 557 841 557 917 640 479 0.87 0.87
spider (36) 384 459 1 298 267 4 679 270 0.08 0.28
storage (30) 419 589 419 589 497 428 0.84 0.84
termes (40) 15 034 15 034 15 034 1.00 1.00
tetris (37) 116 296 25 591 456 96 318 063 0.00 0.27
thoughtful (20) 82 331 547 087 819 046 0.10 0.67
tidybot (35) 694 192 567 420 195 0.00 0.46
tpp (30) 45 234 47 083 3 107 772 0.01 0.02
transport (140) 8 827 475 10 254 463 10 254 463 0.86 1.00
trucks (16) 6 184 288 803 346 455 0.02 0.83
visitall (80) 110 261 682 110 261 682 110 261 682 1.00 1.00
woodworking (100) 42 063 44 376 94 767 0.44 0.47
zenotravel (20) 39 147 39 147 39 147 1.00 1.00
overall (2367) 137 888 165 168 090 208 252 058 664 0.55 0.67

Table 5.2: Left: Sums of numbers of inferred mutex pairs per domain and overall. Right:
Ratios to h2 per domain and overall. Maximums are highlighted.

alone is NP-Hard and it can generate an exponential number of mutex groups (i.e., pos-
sibly many more besides the original ones that were used for the decomposition). The
significance of having richer mutex group sets than just pairs of facts is discussed in more
depth in the following sections.

All mutex groups inferred by fd, and fam were decomposed into mutex pairs (h2 gener-
ates mutex pairs, so decomposition was not necessary), the results are shown in Table 5.2.
Since we already know that h2 dominates fam in terms of mutex pairs (Theorem 5.20),
Table 5.2 shows also ratios to h2. fam inferred only about two thirds of all h2-mutexes
overall, but in almost one third of the domains (16 out of 49) fam found all h2-mutexes,
in 20 domains fam found at least 90% of all h2-mutexes and in 26 domains, i.e., in more
than a half of all domains, fam found 80% of all h2-mutexes or more. Moreover, there
are few outliers, like the domains tpp and mystery, where fam found only a very small
fraction of h2-mutexes, which skews the overall picture.

Figure 5.1 shows the comparison as scatter plots where each point corresponds to an
individual problem from the dataset. The middle plot comparing fam and h2 shows that

5.5. EXPERIMENTAL EVALUATION 37

0 1 10 102 103 104 105 106 107

fd

0
1

10

102

103

104

105

106

107
f
a
m

0 1 10 102 103 104 105 106 107

fam

0
1

10

102

103

104

105

106

107

h
2

0 1 10 102 103 104 105 106 107

fd

0
1

10

102

103

104

105

106

107

h
2

Figure 5.1: Comparison of the number of inferred mutex pairs in each problem as scatter
plots with the logarithmic scale and added zero.

these two methods are very close to each other. The left scatter plot in Figure 5.1 shows
that fam produces at least as many mutex pairs as fd in every single planning task (and
we will explain in more detail why in Chapter 7). The relative difference between fam

and fd is much higher than between fam and h2 which is a promising result considering
that fd, unlike h2, is able to produce mutex groups consisting of more than two facts.

5.5.2 Comparison of Mutex Groups

In Section 5.5.1, we provided an analysis of the algorithms for inference of mutex groups in
terms of mutex pairs that were obtained by decomposition of the inferred mutex groups.
As mentioned before, this type of analysis disregards the fact that the mutex groups
consisting of more than two facts can provide more useful information than those formed
by just a pair of facts. A translation from PDDL to FDR is one of the applications for
which larger mutex groups are desirable. Other possible applications were discussed in
Section 4.1 and Section 5.1 and there are possibly more to be discovered given the tight
relationship between the satisfiability of planning tasks and the inference of maximum
mutex groups.

In this section, we compare the inferred mutex groups produced by the algorithms fd
and fam. Since h2 can produce mutex pairs only, which we have compared in the previous
section, we decided to use an algorithm for enumerating all maximal cliques (Bron &

0 1 10 102 103

fd

0
1

10

102

103

f
a
m

0 1 10 102 103 104 105 106

fam

0
1

10

102

103

104

105

106

h
2?

0 1 10 102 103 104 105 106

fd

0
1

10

102

103

104

105

106

h
2?

Figure 5.2: Comparison of the number of inferred mutex groups in each problem as scatter
plots with the logarithmic scale and added zero.

38 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

domain #mutex groups cover number avg. rel. cover
fd fam h2? fd fam h2? fd fam h2?

agricola (34) 311 886 6 965 285 4 325 2 178 2 144 0.71 0.36 0.35
airport (3) 53 87 263 011 206 204 110 0.76 0.75 0.41
barman (74) 1 153 2 793 16 160 16 914 3 140 3 053 0.88 0.19 0.18
blocks (35) 709 709 2 413 709 709 709 0.18 0.18 0.18
caldera (40) 2 380 7 312 7 312 14 755 11 797 11 797 0.83 0.71 0.71
cavediving (40) 368 1 640 13 438 7 492 1 866 1 826 0.73 0.22 0.22
childsnack (40) 2 596 2 596 1 536 3 126 3 126 3 126 0.49 0.49 0.49
cybersec (30) 10 266 3 636 740 692 19 864 8 252 6 750 0.94 0.39 0.32
data-network (40) 4 379 4 379 4 379 8 256 8 256 8 256 0.53 0.53 0.53
depot (22) 1 029 1 029 145 865 807 807 807 0.12 0.12 0.12
driverlog (20) 375 375 375 375 375 375 0.13 0.13 0.13
elevators (100) 2 401 2 401 2 401 2 401 2 401 2 401 0.09 0.09 0.09
floortile (80) 2 613 2 613 2 613 2 432 2 432 2 432 0.20 0.20 0.20
freecell (80) 5 432 5 432 24 026 5 432 5 432 5 432 0.30 0.30 0.30
ged (33) 1 398 1 398 8 274 638 866 866 866 0.09 0.09 0.09
gripper (20) 520 520 520 520 520 520 0.28 0.28 0.28
hiking (40) 522 522 522 522 522 522 0.20 0.20 0.20
logistics (62) 2 223 2 223 2 223 2 223 2 223 2 223 0.09 0.09 0.09
maintenance (25) 3 090 3 090 6 14 200 14 194 14 194 1.00 0.99 0.99
movie (30) 0 0 0 210 210 210 1.00 1.00 1.00
mprime (35) 1 373 1 376 1 439 1 373 1 373 1 373 0.10 0.10 0.10
mystery (30) 1 042 1 102 74 478 1 042 1 042 1 042 0.17 0.17 0.17
nomystery (40) 400 440 8 580 780 440 440 0.08 0.05 0.05
openstacks (167) 20 852 20 852 397 841 21 847 21 847 20 852 0.36 0.36 0.33
organic-synthesis (10) 12 1 796 1 220 440 408 236 134 1.00 0.61 0.39
parcprinter (70) 2 345 4 492 16 343 12 615 3 971 3 971 0.61 0.24 0.24
parking (80) 4 795 4 795 224 779 4 795 4 795 4 795 0.07 0.07 0.07
pathways (30) 1 440 1 440 31 888 9 268 9 268 9 268 0.81 0.81 0.81
pegsol (70) 2 354 2 577 120 699 2 354 2 354 2 354 0.34 0.34 0.34
pipesworld-notankage (38) 384 480 5 685 948 8 498 7 130 702 0.75 0.67 0.09
pipesworld-tankage (38) 2 112 2 913 5 674 152 3 083 2 405 1 952 0.27 0.23 0.18
psr-small (50) 835 835 1 885 1 252 1 252 1 103 0.52 0.52 0.46
rovers (40) 1 936 1 938 3 325 8 706 8 706 8 706 0.43 0.43 0.43
satellite (36) 256 508 508 12 516 11 950 11 950 0.49 0.45 0.45
scanalyzer (70) 1 408 1 580 2 572 1 580 1 580 1 580 0.18 0.18 0.18
snake (31) 93 3 114 14 285 7 691 3 641 3 083 0.73 0.35 0.29
sokoban (100) 4 991 4 999 8 094 4 891 4 891 4 891 0.20 0.20 0.20
spider (36) 1 320 5 495 568 034 17 534 7 496 4 850 0.43 0.20 0.13
storage (30) 1 140 1 140 234 778 2 560 2 560 1 140 0.24 0.24 0.17
termes (40) 690 690 690 690 690 690 0.17 0.17 0.17
tetris (37) 118 1 834 36 696 68 302 1 544 1 544 0.91 0.03 0.03
thoughtful (20) 854 1 416 68 781 5 797 4 502 3 727 0.55 0.42 0.34
tidybot (35) 292 684 9 868 17 721 11 321 5 940 0.98 0.63 0.33
tpp (30) 3 683 4 064 5 018 3 683 3 683 3 683 0.28 0.28 0.28
transport (140) 2 102 2 534 2 534 27 273 2 534 2 534 0.25 0.05 0.05
trucks (16) 188 2 502 5 182 7 564 330 330 0.87 0.05 0.05
visitall (80) 80 80 80 82 538 82 538 82 538 0.50 0.50 0.50
woodworking (100) 4 590 6 544 14 980 16 922 16 886 10 001 0.58 0.57 0.37
zenotravel (20) 335 335 335 335 335 335 0.13 0.13 0.13
overall (2367) 103 838 126 196 30 901 647 459 253 290 810 263 261 0.41 0.30 0.27

Table 5.3: Left: Sums of the number of inferred mutex groups, maximums highlighted.
Middle: Sums of mutex group cover numbers, minimums highlighted. Right: Average
of C/ |F| within each domain, where C is a mutex group cover number and |F| is a
number of facts; the overall row is average over all problems from all domains; minimums
highlighted.

Kerbosch, 1973; Tomita et al., 2006; Cazals & Karande, 2008) for construction of maximal
mutex groups from the mutex pairs generated by h2 (as described in Proposition 4.9). This
modified algorithm is denoted by h2?.

The sums of a number of inferred mutex groups by all three algorithms are listed in
Table 5.3 (left side), the maximal values are highlighted. Figure 5.2 shows per-problem
comparison as scatter plots. Every mutex group that was generated by fd was also
generated by fam or it was a subset of some mutex group generated by fam. Note that
there are cases in which fd reports more mutex groups than fam (or fam more than h2?),
but in these cases the mutex groups from fd are subsets of some mutex group found by
fam (more on that below).

Since a set of h2-mutexes is always a superset of decompositions of all fam-groups
(Theorem 5.20), h2? must always generate a richer set of mutex groups than fam (and, thus,

5.5. EXPERIMENTAL EVALUATION 39

1 10 102 103 104

fd

1

10

102

103

104
f
a
m

1 10 102 103 104

fam

1

10

102

103

104

h
2?

1 10 102 103 104

fd

1

10

102

103

104

h
2?

Figure 5.3: Comparison of the mutex group cover numbers for each problem as scatter
plots with the logarithmic scale.

also than fd). Many of the mutex groups inferred by h2? are supersets of fam mutex groups
that differ in a couple of facts only. The main source of the big difference between the
number of mutex groups inferred by h2? (30 901 647) and fam (126 196) is caused by the fact
that the maximum possible number of mutex groups grows exponentially which follows
from the tight relationship between mutex groups and graph cliques (Proposition 5.16).
This aspect of the comparison is clearly visible if we compare the middle scatter plot
in Figure 5.2, showing the number of mutex groups, with the middle scatter plot in
Figure 5.1, depicting the number of mutex pairs. The comparison shows how the relatively
small difference between the number of mutex pairs translates into a more substantial
difference in the number of maximal mutex groups. Moreover, similarly to h2?, we can
decompose fam-groups inferred by fam into mutex pairs and then use an algorithm for
enumerating maximal cliques for the construction of new mutex groups. This approach
may generate more mutex groups than is the original number of fam-groups, but the
resulting mutex groups are not necessarily fam-groups.

Comparison based on the number of inferred mutex groups, however, does not give us
the full picture, because, as mentioned before, the numbers do not reflect on the fact that
one method can find multiple mutex groups that are all subset of some mutex group found
by other method. Therefore, we have decided to borrow a well established concept from
graph theory called the clique cover number. The clique cover number is the minimum
number of cliques that cover all the vertices of a graph. Similarly to this, we use the mutex
group cover number (or just cover number for short) as the minimum number of mutex
groups that cover all facts of a planning task. None of the tested algorithms generates
single facts as mutex groups, but since every single fact is a mutex group by definition,
we add them artificially as if they were generated by the corresponding algorithm solely
for the purpose of the computation of the mutex group cover number if we need them for
covering the facts that are not covered by any other generated mutex group. To demon-
strate a mutex group cover number on an example, consider a planning task with five
facts {f1, f2, f3, f4, f5} and suppose that fd generates a single mutex group {f1, f2}, fam
generates two mutex groups {f1, f2} and {f2, f3, f4}, and h2? generates {f1, f2, f3, f4, f5}.
In this case the cover number for fd would be 4, for fam it would be 3 and for h2? it would
be only 1.

When comparing cover numbers, the smaller is better because the mutual exclusion
between the facts can be described more concisely by a smaller number of mutex groups.
The cover number can be also interpreted in the context of finite domain representation as

40 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

the minimum number of variables that can be used for the full description of all reachable
states given the inferred mutex groups by the corresponding algorithm.

The sum of the mutex group cover numbers for each domain and overall is listed in
Table 5.3 (middle). We also show cover numbers as a ratio to the number of facts, i.e.,
the smaller number means that less mutex groups are needed to cover all facts relatively
to the size each problem. Table 5.3 (right) shows averages within each domain and the
average over all problems. The table shows that fam-groups are actually very close to the
mutex groups constructed from h2-mutexes (0.3 versus 0.27 overall), but there are also
domains h2-mutexes provide much richer information (e.g., airport, pipesworld-notankage,
or thoughtful). The difference between fd and fam is much more profound in both absolute
and relative numbers.

The left scatter plot in Figure 5.3 clearly shows that the cover number of fam is smaller
than (or the same as) fd in all planning tasks, which was expected given the comparison
laid out above. Rather surprising is the fact that the overall cover number of fd is about
1.58 times higher than that of fam even though fam inferred only about 20% more mutex
groups. This result suggests that if fam is used as a replacement for fd in a translation
from PDDL to FDR, the overall memory footprint of the planner will be reduced.

5.5.3 Comparison of Running Times

Table 5.4 shows the sum and average of running times in seconds of implemented al-
gorithms in each domain and overall (0.00 means that the running time is below 10
milliseconds). The results show that fd is almost 2 times faster than h2 and more than
120 times faster than fam, and the difference is even more profound without considering
the cybersec domain. The running time of fd almost never exceeds one second (note that
we re-implemented the inference algorithm in C instead of using the original implemen-
tation in Python). fam is more than an order of magnitude slower than h2 which is an
expected result considering that h2 is a polynomial algorithm, but fam requires to solve
the ILP repeatedly.

A little surprising is the fact that fd turned out to be the fastest of the tested algo-
rithms by a huge margin, because fd has not guaranteed polynomial running time since
it can generate an exponential number of mutex group candidates. The inference of h2-
mutexes in all domains needed about 60% more time than the inference of the maximal
mutex groups from these h2-mutexes (h2?) even though the inference of h2-mutexes is
polynomial in time, but the inference of the maximal mutex groups is NP-Hard.

In comparison to h2?, fam requires almost fifty times more time. Considering that
both h2? and fam are NP-Hard (both are implemented using exponential algorithms) and
that h2? always produces supersets of fam, we suppose that fam can be implemented more
efficiently either by using some appropriate heuristic for ILP, or by using some other type
of formulation than ILP.

As suggested in Section 5.4, fam can be combined with a faster algorithm to increase
its speed while preserving its completeness. Since the fd generated only subsets of mutex
groups inferred by fam (in all cases), we have implemented a combination of fam and
fd that we denote by famfd (this is also justified by the theory laid out in Chapter 7).
The algorithm famfd first infers mutex groups by fd and then runs fam initialized by
these mutex groups (see Section 5.4 and specifically Equation (5.3)), i.e., fam spends
its computational time only on the mutex groups that were not already inferred by fd.
The resulting running time of famfd over all domains is only about 43% of the running

5.5. EXPERIMENTAL EVALUATION 41

domain sum avg
fd h2 h2? fam famfd fd h2 h2? fam famfd

agricola (34) 0.04 11.57 38.84 141.29 87.59 0.00 0.34 1.14 4.16 2.58
airport (3) 0.00 0.00 0.24 0.68 0.37 0.00 0.00 0.08 0.23 0.12
barman (74) 0.03 0.70 0.77 110.98 87.21 0.00 0.01 0.01 1.50 1.18
blocks (35) 0.04 0.08 0.17 10.00 0.42 0.00 0.00 0.00 0.29 0.01
caldera (40) 3.95 100.39 100.46 7 549.06 5 237.19 0.10 2.51 2.51 188.73 130.93
cavediving (40) 0.00 1.43 1.56 240.90 233.10 0.00 0.04 0.04 6.02 5.83
childsnack (40) 0.02 0.56 0.58 350.95 3.03 0.00 0.01 0.01 8.77 0.08
cybersec (30) 695.57 1.43 20.28 701.01 1 731.11 23.19 0.05 0.68 23.37 57.70
data-network (40) 0.02 1.68 1.71 646.31 4.66 0.00 0.04 0.04 16.16 0.12
depot (22) 0.01 0.87 1.83 191.42 48.15 0.00 0.04 0.08 8.70 2.19
driverlog (20) 0.01 0.55 0.59 6.57 0.36 0.00 0.03 0.03 0.33 0.02
elevators (100) 0.01 15.19 15.50 981.13 66.65 0.00 0.15 0.15 9.81 0.67
floortile (80) 0.02 0.14 0.19 24.19 1.39 0.00 0.00 0.00 0.30 0.02
freecell (80) 0.05 4.13 4.32 1 120.16 1 252.24 0.00 0.05 0.05 14.00 15.65
ged (33) 0.27 1.18 12.69 996.55 36.26 0.01 0.04 0.38 30.20 1.10
gripper (20) 0.01 0.01 0.01 3.95 0.24 0.00 0.00 0.00 0.20 0.01
hiking (40) 0.01 0.32 0.33 9.85 0.69 0.00 0.01 0.01 0.25 0.02
logistics (62) 0.03 47.20 54.57 970.83 19.21 0.00 0.76 0.88 15.66 0.31
maintenance (25) 0.16 0.15 0.16 335.74 4.29 0.01 0.01 0.01 13.43 0.17
movie (30) 0.01 0.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.00
mprime (35) 0.01 6.75 6.90 470.81 6.04 0.00 0.19 0.20 13.45 0.17
mystery (30) 0.00 2.89 5.45 222.97 9.96 0.00 0.10 0.18 7.43 0.33
nomystery (40) 0.04 1.15 1.45 16.63 2.76 0.00 0.03 0.04 0.42 0.07
openstacks (167) 0.55 38.28 38.90 21 831.98 66.84 0.00 0.23 0.23 130.73 0.40
organic-synthesis (10) 0.00 0.05 1.30 632.08 622.30 0.00 0.01 0.13 63.21 62.23
parcprinter (70) 0.05 0.23 0.48 324.27 526.67 0.00 0.00 0.01 4.63 7.52
parking (80) 0.03 52.80 71.05 9 128.27 48.36 0.00 0.66 0.89 114.10 0.60
pathways (30) 0.02 0.34 0.36 23.69 0.64 0.00 0.01 0.01 0.79 0.02
pegsol (70) 0.00 0.02 0.20 21.32 4.79 0.00 0.00 0.00 0.30 0.07
pipesworld-notankage (38) 0.00 0.69 12.58 44.17 6.51 0.00 0.02 0.33 1.16 0.17
pipesworld-tankage (38) 0.03 3.32 14.71 2 791.67 332.76 0.00 0.09 0.39 73.47 8.76
psr-small (50) 1.62 0.01 0.01 1.91 0.23 0.03 0.00 0.00 0.04 0.00
rovers (40) 0.24 8.03 8.29 225.22 3.63 0.01 0.20 0.21 5.63 0.09
satellite (36) 0.01 110.49 111.79 545.06 289.91 0.00 3.07 3.11 15.14 8.05
scanalyzer (70) 0.00 4.20 4.30 2 326.46 1 259.31 0.00 0.06 0.06 33.24 17.99
snake (31) 0.01 6.54 6.60 11 301.19 11 084.62 0.00 0.21 0.21 364.55 357.57
sokoban (100) 0.03 1.22 1.59 242.88 5.55 0.00 0.01 0.02 2.43 0.06
spider (36) 0.05 70.40 87.89 11 173.51 8 197.01 0.00 1.96 2.44 310.38 227.69
storage (30) 0.01 3.31 5.89 213.85 2.89 0.00 0.11 0.20 7.13 0.10
termes (40) 0.00 0.18 0.19 2.51 0.17 0.00 0.00 0.00 0.06 0.00
tetris (37) 0.01 4.30 396.24 3 984.38 4 028.13 0.00 0.12 10.71 107.69 108.87
thoughtful (20) 0.01 5.32 13.79 963.22 1 093.57 0.00 0.27 0.69 48.16 54.68
tidybot (35) 0.04 10.45 10.64 207.85 162.59 0.00 0.30 0.30 5.94 4.65
tpp (30) 0.02 3.12 6.79 4 131.65 298.42 0.00 0.10 0.23 137.72 9.95
transport (140) 0.03 320.63 327.73 2 147.32 180.52 0.00 2.29 2.34 15.34 1.29
trucks (16) 0.00 0.51 0.86 2 573.49 2 232.62 0.00 0.03 0.05 160.84 139.54
visitall (80) 0.03 534.31 878.67 129.28 0.70 0.00 6.68 10.98 1.62 0.01
woodworking (100) 0.09 1.71 1.78 1 150.76 569.43 0.00 0.02 0.02 11.51 5.69
zenotravel (20) 0.00 0.89 0.90 14.76 0.66 0.00 0.04 0.05 0.74 0.03
overall (2367) 703.18 1 379.72 2 272.17 91 234.79 39 851.79 0.30 0.58 0.96 38.54 16.84
overall \ cybersec (2337) 7.61 1 378.29 2 251.89 90 533.78 38 120.69 0.00 0.59 0.96 38.74 16.31

Table 5.4: Left: Sums of running times in seconds in each domain and overall, minimums
highlighted. Right: Averages of running times within each domain and over all problems,
minimums highlighted.

time of fam. However, there are cases in which famfd is slower than fam (e.g., cybersec,
freecell, parcprinter, tetris, or thoughtful). The reason in most cases is that fd generates
mutex groups that are not maximal. Therefore, the ILP corresponding to famfd contains
constraints that are actually useless, because it still needs to find maximal fam-groups
that are superset of those expressed in the constraints.

5.5.4 Translation to Finite Domain Representation

Now we shift our attention from the comparison of the tested algorithms in terms of
inferred mutex groups towards the applicability of the algorithms in the actual planning
process. One straightforward application of mutex groups is in the translation from
PDDL to the finite domain representation (FDR). The variables of FDR can be created
from mutex groups such that each mutex group is used for the creation of one variable.
Since, at most, one fact from a mutex group can be true in any state, each value of the

42 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

domain #fdr variables avg rel. to |F|
fd fam h2? fd fam h2?

agricola (34) 4 325 2 178 2 169 0.71 0.36 0.36
airport (3) 208 208 202 0.77 0.77 0.75
barman (74) 16 914 3 140 3 519 0.88 0.19 0.22
blocks (35) 709 709 709 0.18 0.18 0.18
caldera (40) 14 755 11 797 11 797 0.83 0.71 0.71
cavediving (40) 7 588 1 962 2 030 0.74 0.23 0.24
childsnack (40) 3 126 3 126 3 126 0.49 0.49 0.49
cybersec (30) 19 864 8 252 7 408 0.94 0.39 0.35
data-network (40) 8 256 8 256 8 256 0.53 0.53 0.53
depot (22) 1 029 1 029 1 029 0.15 0.15 0.15
driverlog (20) 375 375 375 0.13 0.13 0.13
elevators (100) 2 401 2 401 2 401 0.09 0.09 0.09
floortile (80) 2 613 2 613 2 613 0.22 0.22 0.22
freecell (80) 5 432 5 432 5 432 0.30 0.30 0.30
ged (33) 866 866 866 0.09 0.09 0.09
gripper (20) 520 520 520 0.28 0.28 0.28
hiking (40) 522 522 522 0.20 0.20 0.20
logistics (62) 2 223 2 223 2 223 0.09 0.09 0.09
maintenance (25) 14 200 14 194 14 194 1.00 0.99 0.99
movie (30) 210 210 210 1.00 1.00 1.00
mprime (35) 1 373 1 375 1 390 0.10 0.10 0.10
mystery (30) 1 042 1 058 1 093 0.17 0.17 0.18
nomystery (40) 780 440 440 0.08 0.05 0.05
openstacks (167) 21 847 21 847 21 847 0.36 0.36 0.36
organic-synthesis (10) 408 274 210 1.00 0.68 0.59
parcprinter (70) 12 615 4 141 4 159 0.61 0.25 0.25
parking (80) 6 681 6 681 7 503 0.10 0.10 0.11
pathways (30) 9 268 9 268 9 268 0.81 0.81 0.81
pegsol (70) 2 354 2 371 2 373 0.34 0.34 0.34
pipesworld-notankage (38) 8 498 7 130 1 660 0.75 0.67 0.27
pipesworld-tankage (38) 3 103 2 460 2 458 0.27 0.24 0.24
psr-small (50) 1 252 1 252 1 252 0.52 0.52 0.52
rovers (40) 8 706 8 708 8 708 0.43 0.43 0.43
satellite (36) 12 516 11 950 11 950 0.49 0.45 0.45
scanalyzer (70) 1 580 1 580 1 580 0.18 0.18 0.18
snake (31) 7 691 3 672 3 673 0.73 0.35 0.35
sokoban (100) 5 480 5 476 5 477 0.22 0.22 0.22
spider (36) 17 534 7 949 6 897 0.43 0.21 0.19
storage (30) 2 800 2 800 2 800 0.27 0.27 0.27
termes (40) 690 690 690 0.17 0.17 0.17
tetris (37) 68 302 1 834 1 834 0.91 0.04 0.04
thoughtful (20) 5 797 4 505 3 871 0.55 0.42 0.36
tidybot (35) 17 721 11 322 11 057 0.98 0.63 0.61
tpp (30) 3 683 3 883 3 714 0.28 0.31 0.30
transport (140) 27 273 2 534 2 534 0.25 0.05 0.05
trucks (16) 7 564 330 330 0.87 0.05 0.05
visitall (80) 82 538 82 538 82 538 0.50 0.50 0.50
woodworking (100) 16 922 16 886 11 419 0.58 0.57 0.42
zenotravel (20) 335 335 335 0.13 0.13 0.13
overall (2367) 462 489 295 302 282 661 0.41 0.30 0.29

Table 5.5: Left: Sums of the number FDR variables, maximums highlighted. Right:
Average of V/ |F| within each domain, where V is a number of FDR variables and |F| is
a number of facts; the overall row is average over all tasks from all domains; minimums
highlighted.

corresponding variable represents one fact from the mutex group. If it is possible that a
state does not contain any fact from the mutex group, the corresponding variable must
contain one additional value “none of those”.

The optimal allocation of variables in terms of the minimal number of variables is NP-
Hard, as already mentioned above when we discussed mutex group cover numbers. (The
minimal mutex group cover number is also the minimal possible number of variables in
FDR.) The Fast Downward’s preprocessor that we used for comparison creates variables
from the inferred mutex groups in a greedy way. In each step, the mutex group containing
the most facts that are not yet covered by any variable (breaking ties arbitrarily) is taken
and a new variable is created from it. Moreover, the preprocessor also performs some basic
pruning based on an inconsistent encoding of operators’ preconditions and the resulting
unreachability of facts within domain transition graphs of the corresponding variables.

Table 5.5 shows the number of created variables per domain and overall for the al-

5.5. EXPERIMENTAL EVALUATION 43

domain lmc pot-all ms
fd h2? famfd fd h2? famfd fd h2? famfd

agricola18 (20) 0 0 0 1 1 1 3 6 10
airport04 (50) 29 3 24 23 3 21 16 3 15
blocks00 (35) 28 28 28 28 29 28 21 21 21
caldera18 (20) 8 9 9 8 8 8 9 10 10
depot02 (22) 7 7 7 7 10 7 7 11 7
freecell00 (80) 15 15 15 40 65 64 20 61 61
mprime98 (35) 24 25 24 24 24 24 24 24 24
mystery98 (30) 17 17 17 17 17 17 17 16 17
nomystery11 (20) 15 17 15 14 14 14 20 20 20
organic-synthesis18 (20) 10 8 7 10 8 7 9 8 7
parcprinter08 (30) 19 19 19 22 20 20 27 26 27
parcprinter11 (20) 14 14 14 16 16 16 20 19 20
parking11 (20) 4 4 4 8 6 8 8 1 8
parking14 (20) 4 4 4 8 5 8 8 0 8
petri-net-alignment18 (20) 9 8 0 7 4 0 7 0 0
pipesworld-notankage04 (50) 18 18 18 20 20 20 21 24 22
pipesworld-tankage04 (50) 13 13 13 17 17 18 15 16 16
psr-small04 (50) 48 48 48 50 50 50 50 49 50
rovers06 (40) 7 7 7 5 5 5 6 7 6
scanalyzer08 (30) 16 17 17 13 13 13 13 13 13
scanalyzer11 (20) 13 14 14 10 10 10 10 10 10
snake18 (20) 7 7 7 14 12 13 7 10 15
sokoban08 (30) 30 30 30 28 28 28 30 29 30
spider18 (20) 11 11 11 12 14 13 6 10 12
tetris14 (17) 6 9 9 13 16 16 2 12 11
tidybot11 (20) 14 6 14 14 6 14 8 1 13
tidybot14 (20) 9 8 10 10 8 10 0 0 3
tpp06 (30) 7 7 7 6 6 6 9 9 8
transport11 (20) 7 6 6 6 6 6 6 6 6
trucks06 (30) 8 8 8 7 8 8 5 7 7
woodworking08 (30) 19 20 19 13 14 13 17 15 17
woodworking11 (20) 13 14 13 8 9 8 11 10 11
Σ (1697) 840 812 829 868 861 883 826 848 899
Σ \ petri-net-align18 (1677) 831 804 829 861 857 883 819 848 899

Table 5.6: Comparison of different algorithms used for the inference of FDR variables.
Number of solved tasks in each domain and overall, only the domains with a difference
are shown, maximums are highlighted.

gorithms fd, h2?, and fam. The right side of Table 5.5 shows averages of a number of
variables over the number of facts, i.e., it is directly comparable to the right side of Ta-
ble 5.3 where we show averages of mutex group cover numbers over the number of facts.
The numbers are very similar to the mutex group cover numbers listed in Table 5.3, which
means that the greedy algorithm used in Fast Downward can actually generate a number
of variables very close to the possible minimum.

fd is clearly dominated by both h2? and fam, which was expected considering the
experimental results from the previous sections. The results for h2? and fam are very
similar which also corresponds to the results in the previous sections. Note that there are
domains (e.g., barman, cavediving, or parking) in which fam creates less variables than
h2? even though the mutex group cover number for h2? must always be lower than for fam.
This is clearly an effect of tie breaking in the greedy algorithm and the unnecessarily large
number of mutex groups inferred by h2? that are pairwise complementary which confuses
the preprocessor. However, it does not mean that the mutex groups cannot be useful in
other parts of the planner. It just means that the particular greedy algorithm used in
Fast Downward is not well equipped for rich sets of mutex groups sharing many common
facts.

We have also compared the algorithms in terms of the number of solved planning tasks
in the optimal track. We used the Fast Downward planner (Helmert, 2006) with A∗ and
the following admissible heuristics: the LM-Cut (lmc) heuristic (Helmert & Domshlak,
2009), the potential (pot-all) heuristic optimized for all syntactic states (Seipp et al.,
2015), and the merge-and-shrink (ms) heuristic with SCC-DFP merge strategy and non-
greedy bi-simulation shrink strategy (Helmert et al., 2014; Sievers et al., 2016). The

44 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

maximal allowed time for the whole planning process (including preprocessor and search)
was set to 30 minutes and the maximal memory limit was set to 8 GB. For this experiment,
we used famfd instead of fam, because it is the faster variant as was demonstrated in the
previous section.

Although we would like to filter out the influence of the pruning of operators and
facts from the planning tasks, this is not entirely possible. Some operators simply cannot
be translated into FDR because they have their preconditions or effects in conflict with
some variable in FDR. For example, consider the mutex group {f1, f2} that is used for
the construction of a new variable, and an operator f1, f2 7→ f3. Such an operator has
preconditions that cannot be represented in the constructed FDR. It should be stressed
that this behaviour is correct, because this operator cannot be used in any reachable
state, which follows from the mutex group {f1, f2}. However, this side effect of using
mutex groups for translation into FDR also needs to be taken into consideration, when
the experimental results are evaluated.

The results are listed in Table 5.6. First of, note that famfd did not solve any task
in the petri-net-alignment domain, because the inference of fam-groups in this domain
consumed the whole time limit of 30 minutes. For lmc, the number of solved tasks is
almost identical for all three variants except for the aforementioned petri-net-alignment
domain and also airport, freecell, and tidybot domains. In airport and tidybot domains,
h2 solved considerably less tasks than the other two variants, because no pruning was used
and the resulting task had a huge number of overlapping mutex groups of which inference
consumed all allotted memory. The freecell domain contains more tasks than any other
domain, so the change of coverage in this domain affects the overall results more than any
other domain. The results for pot-all are also very similar for all variants. The main
reason why famfd solved more tasks than fd is due to the freecell domain.

The difference in the encoding of FDR variables had the biggest impact on the merge-
and-shrink heuristic (ms). The reason is that the more facts are covered by a single
mutex groups, the bigger and more informative are the resulting FDR variables and
therefore also the atomic projections (which form a starting point for the merge-and-
shrink heuristic). On one hand, this leads to the faster construction of the heuristic
(because fewer variables means less merge steps). On the other hand, more informative
FDR variables produce more accurate heuristic. The difference between famfd and h2 is
mainly due to the tidybot and parking domains. The tidybot was problematic for h2 for
the same reasons as before—without pruning, the inference of mutex groups consumes all
memory. In the parking domains, the problem was the greedy selection of mutex groups
used for the construction of FDR variables. h2 found a richer set of mutex groups than
famfd, but the resulting number of FDR variables was often higher with h2, i.e., more
informative mutex groups did not translate to more informative FDR variables. This
suggest that it would be beneficial to improve the merge-and-shrink heuristic so that
it can use mutex groups directly instead of FDR variables constructed from the mutex
groups.

5.6 Summary

In this chapter, we have introduced a new type of mutex group called a fact-alternating
mutex group (fam-group) and we have shown that the inference of the maximum sized
fam-group is NP-Complete. This result allowed us to introduce a novel algorithm for
inference of fam-groups based on integer linear programming that is complete with respect

5.6. SUMMARY 45

to maximal fam-groups.
The main property of the fam-group is that the facts from the fam-group alternate

between each other in all states on a path leading from the initial state and once they
disappear from a state they cannot reappear again in any consecutive state. This property
provides a way to detect operators that can produce only dead-end states.

We have proven that the h2 variant of hm heuristics (Haslum & Geffner, 2000) generates
mutex pairs (h2-mutexes) that are a superset of a pair decomposition of fam-groups. This
means that mutex groups constructed from h2-mutexes are supersets of fam-groups, but
they does not necessarily have the properties of fam-groups relating to dead-end states.

The algorithm for the inference of fam-groups was compared to the algorithm for the
inference of mutex groups proposed by Helmert (2009) for the translation of planning tasks
from PDDL to FDR that is widely used among the planning community. Our algorithm
generated a richer set of mutex groups in most of the tested domains and in the rest of
the domains the generated set of mutex groups was identical. Therefore, our algorithm
can provide a smaller state encoding in FDR than Helmert’s algorithm, which was also
experimentally verified.

46 CHAPTER 5. FACT-ALTERNATING MUTEX GROUP

Chapter 6

Pruning Tasks with Fact-Alternating
Mutex Groups

As we have mentioned before, mutual exclusion invariants can be used to remove facts
and operators that cannot be part of any plan—we call this process pruning of planning
tasks. Almost all planning techniques can benefit from pruning, because it reduces the
size of planning tasks and allows the selected planning technique to concentrate on the
features of planning tasks that are useful for finding the plan. We have previously shown,
that fam-groups have a property that allows to use them for the detection of not only
unreachable operators, but also operators that can reach only dead-end states. In this
chapter, we propose a simple fixpoint pruning algorithm that utilizes this property and
we experimentally evaluate how beneficial the resulting pruning is for heuristic search
planners.

6.1 Pruning Algorithm

One obvious way to use mutexes and mutex groups to remove unreachable facts and oper-
ators is to check preconditions of operators. If we find an operator with the precondition
containing more than one fact from some mutex group, then we can remove such opera-
tor, because it cannot be reached from the initial state. Fact-alternating mutex groups
provide another method to remove operators that can produce dead-end states only (i.e.,
the removal of dead-end operators). The algorithm for the pruning of planning tasks we
propose is encapsulated in Algorithm 6.1.

The algorithm repeatedly removes facts and operators until a fixpoint is reached when
no more facts or operators can be removed. In each cycle, the irrelevant facts are detected
and removed, then fam-groups are inferred and they are, in turn, used for the removal of
unreachable operators and dead-end operators.

The detection and removal of irrelevant facts (line 3) follows the idea used by Helmert
(2006) for removal of variables in finite domain representation of a planning task. First,
a causal graph of facts is constructed, i.e., a directed graph with facts represented by
vertices and an edge f1 → f2 connecting every pair of facts f1 and f2 if f1 ∈ pre(o) and
f2 ∈ add(o) ∪ del(o) for some operator o. Then, a fact in the causal graph, from which
there is no path leading to a goal fact, is not useful for finding a plan because it takes no
part in the applicability of the operators in reachable states. Such a fact can be safely
removed from the planning task. The function IrrelevantFacts listed in Algorithm 6.1
shows how irrelevant facts can be found without actually constructing a causal graph.

47

48CHAPTER 6. PRUNING TASKS WITH FACT-ALTERNATING MUTEX GROUPS

Algorithm 6.1: Pruning of a planning task using inferred fam-groups.

Input: STRIPS planning task Π = 〈F ,O, sI , sG〉
Output: Planning task Π

?
= 〈F?,O?, s?I , sG〉, set of fam-groups M

1 F? ← F , O? ← O, s?I ← sI ;
2 do

3 Remove facts returned by IrrelevantFacts(F?,O?, sG) from F?, s?I and all

operators in O?;
4 Use Algorithm 5.1 with Π

?
and store the inferred fam-groups into M;

5 for each o ∈ O? and M ∈M do

6 if |pre(o) ∩M | ≥ 2 or |add(o) ∩M | ≥ 2 then Remove o from O?;
7 for each o ∈ O? and M ∈M such that |M ∩ sG| ≥ 1 do

8 if |M ∩ pre(o) ∩ del(o)| ≥ 1 and |M ∩ add(o)| = 0 then Remove o from O?;
9 while change in F? or O? occurred ;

10 function IrrelevantFacts(F ,O, sG)
11 U ← sG;
12 R← ∅;
13 while |U | > 0 do
14 f ← choose any fact from U ;
15 U ← U \ {f};
16 if f 6∈ R then
17 R← R ∪ {f};
18 for each o ∈ O such that f ∈ (add(o) ∪ del(o)) do
19 U ← U ∪ {g | g ∈ pre(o), g 6∈ R};
20 return F \R;

The inferred fam-groups (line 4) are used for the removal of unreachable operators
(lines 5–6) which are those that cannot be applied in any reachable state as already
discussed in Section 4.1. Finally, fam-groups containing a fact from the goal specification
are used for removal of dead-end operators (lines 7–8) according to Corollary 5.6.

Algorithm 6.1 can be also used with any other type of mutex group, i.e., line 4 can be
replaced by any other algorithm that provides a set of mutex groups, but the removal of
dead-end operators (lines 7–8) cannot be used, because Corollary 5.6 does not generally
hold for any type of mutex group.

6.2 Experimental Evaluation

For the evaluation of Algorithm 6.1, we used the same cluster as for the experiments
from Section 5.5 with 8 GB and 30 minutes memory and time limit, respectively. All
tested algorithms were implemented1 in C and the inferred mutex groups are further
used for creation of the variables in FDR. For the solving of FDR planning tasks, we use
the Fast Downward planner (Helmert, 2006) with the same admissible heuristics as in
Section 5.5.4, i.e., the LM-Cut (lmc) heuristic (Helmert & Domshlak, 2009), the potential
(pot-all) heuristic optimized for all syntactic states (Seipp et al., 2015), and the merge-
and-shrink (ms) heuristic with SCC-DFP merge strategy and non-greedy bi-simulation
shrink strategy (Helmert et al., 2014; Sievers et al., 2016). We used only domains from

1https://gitlab.com/danfis/cpddl

6.2. EXPERIMENTAL EVALUATION 49

domain perc. of removed operators dead-end perc. of removed facts

fd h2? famdefd famfd famh
2

fd famfd famh
2

fd fd h2? famdefd famfd famh
2

fd
agricola18 (20) 0.00 63.57 14.36 14.36 63.57 0.00 0.00 0.00 4.35 3.80 3.80 4.35
airport04 (21) 0.00 55.48 10.76 17.46 62.56 6.74 6.91 0.00 46.46 46.02 47.04 50.78
barman11 (20) 16.09 26.92 16.09 43.19 53.14 27.10 26.21 0.00 0.00 0.00 18.76 18.76
barman14 (14) 15.53 25.58 15.53 44.48 53.97 28.95 28.40 0.00 0.00 0.00 21.26 21.26
caldera18 (20) 0.00 9.68 9.68 9.68 9.68 0.00 0.00 0.00 34.26 34.26 34.26 34.26
cavediving14 (20) 0.00 0.27 0.00 0.00 0.27 0.00 0.00 0.00 2.27 2.27 2.27 2.27
depot02 (22) 4.12 24.26 4.12 4.12 24.26 0.00 0.00 2.49 2.49 2.49 2.49 2.49
driverlog02 (20) 0.00 2.04 2.04 2.04 2.04 0.00 0.00 0.00 2.48 2.48 2.48 2.48
floortile11 (20) 0.00 0.00 0.00 22.96 22.96 22.96 22.96 0.00 20.07 20.07 20.07 20.07
floortile14 (20) 0.00 0.00 0.00 22.83 22.83 22.83 22.83 0.00 22.54 22.54 22.54 22.54
freecell00 (80) 0.01 0.06 0.02 0.02 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
logistics00 (28) 0.00 7.92 7.92 7.92 7.92 0.00 0.00 0.00 8.12 8.12 8.12 8.12
logistics98 (34) 0.00 19.74 19.74 19.74 19.74 0.00 0.00 0.00 23.16 23.16 23.16 23.16
maintenance14 (5) 0.00 6.25 6.25 21.53 21.53 15.28 15.28 0.00 6.92 6.92 6.92 6.92
mprime98 (35) 0.00 11.50 0.00 0.00 11.50 0.00 0.00 0.00 0.69 0.00 0.00 0.69
mystery98 (30) 0.00 36.89 0.02 0.02 36.89 0.00 0.00 0.00 33.20 2.47 2.47 33.20
nomystery11 (20) 0.00 23.25 0.00 0.00 23.25 0.00 0.00 0.00 6.18 1.13 1.13 6.18
organic-synth18 (8) 0.00 93.73 88.72 93.13 95.68 2.72 1.90 0.00 53.35 49.09 61.89 69.21
parcprinter08 (30) 0.00 3.23 3.23 63.77 68.66 54.47 55.74 0.00 35.71 35.71 51.80 51.80
parcprinter11 (20) 0.00 5.55 5.55 62.75 67.39 50.69 51.61 0.00 32.34 32.34 51.11 51.11
parking11 (20) 3.57 5.81 3.57 7.13 7.13 3.57 1.32 0.00 3.35 3.35 3.35 3.35
parking14 (20) 3.78 6.15 3.78 7.56 7.56 3.78 1.41 0.00 3.53 3.53 3.53 3.53
pathways06 (30) 0.00 2.30 2.30 2.30 2.30 0.00 0.00 0.00 26.70 26.70 26.70 26.70
pegsol08 (30) 0.00 13.47 8.98 11.97 16.29 3.68 2.45 0.00 5.27 4.83 8.15 8.56
pegsol11 (20) 0.00 5.43 1.32 5.68 10.27 3.54 3.32 0.00 0.10 0.10 1.90 1.90
pipesw-notank04 (44) 0.98 6.38 0.98 0.98 6.38 0.00 0.00 0.89 3.62 0.89 0.89 3.62
pipesw-tank04 (50) 4.26 5.26 5.25 5.25 5.26 0.00 0.00 0.53 5.80 5.80 5.80 5.80
psr-small04 (50) 0.00 16.62 15.49 15.49 16.62 0.00 0.00 0.00 29.94 27.91 27.91 29.94
rovers06 (40) 0.00 23.41 23.41 23.41 23.41 0.00 0.00 0.00 29.08 29.08 29.08 29.08
satellite02 (36) 0.00 2.19 2.19 2.19 2.19 0.00 0.00 0.00 24.71 24.71 24.71 24.71
scanalyzer08 (30) 0.41 35.28 35.27 35.27 35.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00
scanalyzer11 (20) 0.72 33.05 33.05 33.05 33.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
snake18 (20) 0.00 11.59 11.41 11.41 11.59 0.00 0.00 0.00 11.02 11.02 11.02 11.02
sokoban08 (30) 0.00 0.28 0.00 0.02 0.29 0.02 0.01 0.00 16.78 16.75 16.75 16.78
sokoban11 (20) 0.00 0.36 0.00 0.03 0.38 0.03 0.01 0.00 15.96 15.91 15.91 15.96
spider18 (16) 0.00 15.01 5.48 5.48 15.02 0.86 0.01 0.00 4.52 1.43 1.43 4.52
tetris14 (17) 0.00 93.85 93.85 93.85 93.85 0.00 0.00 0.00 71.94 71.94 71.94 71.94
tidybot11 (20) 0.00 42.89 0.17 0.17 42.89 0.00 0.00 0.00 39.56 29.70 29.70 39.56
tidybot14 (20) 0.00 36.68 0.15 0.15 36.68 0.00 0.00 0.00 37.02 30.03 30.03 37.02
tpp06 (30) 0.00 41.69 20.13 40.26 61.82 20.14 20.13 0.00 19.11 12.89 14.82 21.04
trucks06 (30) 0.00 1.32 0.00 89.10 89.32 89.10 88.01 0.00 89.45 89.45 89.45 89.45
woodworking08 (30) 0.00 44.99 0.24 8.64 52.27 8.06 6.80 0.00 10.44 10.31 11.51 11.71
woodworking11 (20) 0.00 46.11 0.20 7.95 52.66 7.42 5.98 0.00 9.96 9.88 11.08 11.34
zenotravel02 (20) 0.00 0.21 0.21 0.21 0.21 0.00 0.00 0.00 1.22 1.22 1.22 1.22
overall (1625) 0.60 15.47 9.50 12.94 18.80 3.45 3.32 0.15 22.56 21.19 21.80 23.23

Table 6.1: Percentage of removed operators and facts for tasks in which all methods
finished within the time and memory limits, only the domains with a difference are shown.
Left: Percentage of removed operators per domain and over all domains, maximums
highlighted. Middle: Percentage of removed operators that were detected as dead-end
operators, maximums highlighted if there is a difference. Right: Percentage of removed
facts per domain and over all domains, maximums highlighted.

the optimal track of IPC. We compare our pruning algorithm with fd and h2 (Section 5.5)
in two ways. First in Section 6.2.1, we use only forward pruning where we discover
superfluous facts and operators only in progression from the initial state towards goals.
Then in Section 6.2.2, we use the technique proposed by Alcázar & Torralba (2015) that
alternates between pruning in the forward direction (progression) and in the backward
direction (regression, i.e., it starts in the goal and proceeds towards the initial state).

6.2.1 Forward Pruning of Planning Tasks

Although Algorithm 6.1 is formulated specifically for fam, we also described how the
algorithm can be altered to include different inference algorithms. Algorithm 6.1 with fd

used for inference runs in one cycle only, because fd infers mutex groups on the lifted
PDDL task, therefore, the consecutive cycles cannot remove any additional operators or
facts. The removal of the operators producing dead-end states (dead-end operators) is

50CHAPTER 6. PRUNING TASKS WITH FACT-ALTERNATING MUTEX GROUPS

domain lmc pot-all ms

fd h2? famdefd famfd famh
2

fd fd h2? famdefd famfd famh
2

fd fd h2? famdefd famfd famh
2

fd
agricola18 (20) 0 0 0 0 0 1 1 2 2 1 3 6 10 10 7
airport04 (50) 29 28 28 23 21 23 26 25 22 20 16 19 19 19 19
barman11 (20) 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8
barman14 (14) 0 0 0 0 2 3 3 3 3 3 3 3 3 3 3
caldera18 (20) 8 12 12 12 12 8 12 12 12 12 9 12 12 12 12
depot02 (22) 7 7 7 7 7 7 11 7 7 11 7 11 7 7 11
floortile11 (20) 8 8 8 8 8 6 6 6 6 6 4 6 6 7 7
floortile14 (20) 8 8 8 8 8 3 5 5 5 5 2 2 2 5 5
freecell00 (80) 15 15 15 15 15 40 65 64 64 65 20 61 61 61 61
logistics00 (28) 20 20 20 20 20 17 19 19 19 19 20 20 20 20 20
mprime98 (35) 24 25 24 24 25 24 24 24 24 24 24 24 24 24 24
mystery98 (30) 17 19 17 17 19 17 19 17 17 19 17 18 17 17 18
nomystery11 (20) 15 17 16 15 17 14 14 14 14 14 20 20 20 20 20
organic-synth18 (20) 10 10 9 9 8 10 10 9 9 8 9 10 9 9 8
parcprinter08 (30) 19 19 19 22 22 22 22 22 27 27 27 25 27 27 27
parcprinter11 (20) 14 14 14 17 17 16 18 18 19 19 20 18 20 20 20
parking11 (20) 4 4 4 4 4 8 6 8 8 8 8 0 8 8 8
parking14 (20) 4 4 4 4 4 8 5 8 8 8 8 0 8 8 8
petri-net-align18 (20) 9 7 0 0 0 7 3 0 0 0 7 0 0 0 0
pipesw-notank04 (50) 18 18 18 18 18 20 20 20 20 21 22 24 22 22 22
pipesw-tank04 (50) 13 13 13 13 13 17 17 18 18 17 15 16 16 16 16
psr-small04 (50) 48 49 49 49 49 50 50 50 50 50 50 50 50 50 50
rovers06 (40) 7 9 9 9 9 5 7 7 7 7 6 8 8 8 8
satellite02 (36) 7 7 7 7 7 5 6 6 6 6 6 7 7 7 7
scanalyzer08 (30) 16 17 17 17 17 13 13 13 13 13 13 13 13 13 13
scanalyzer11 (20) 13 14 14 14 14 10 10 10 10 10 10 10 10 10 10
snake18 (20) 7 7 7 7 7 14 13 13 13 13 7 14 15 15 15
spider18 (20) 11 11 10 10 11 12 14 11 11 13 6 12 11 11 12
tetris14 (17) 6 9 9 9 9 13 16 16 16 16 2 11 11 11 11
tidybot11 (20) 14 17 14 14 17 14 14 14 14 14 8 16 13 13 16
tidybot14 (20) 10 13 10 10 13 10 10 10 10 10 0 9 3 3 9
transport11 (20) 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6
trucks06 (30) 8 10 10 13 13 7 12 12 14 14 5 9 9 9 9
visitall11 (20) 11 12 12 12 12 16 17 17 17 17 9 9 9 9 9
visitall14 (20) 5 6 6 6 6 13 13 13 13 13 3 4 4 4 4
woodworking08 (30) 19 21 19 23 23 13 14 13 13 14 17 16 17 20 20
woodworking11 (20) 13 15 13 16 15 8 9 8 8 9 11 10 11 14 14
Σ (1697) 841 868 845 855 869 868 918 908 913 920 827 906 915 925 936
Σ \ petri-net-al18 (1677) 832 861 845 855 869 861 915 908 913 920 820 906 915 925 936

Table 6.2: Comparison of different algorithms used for pruning of the planning tasks and
the inference FDR variables. Number of solved tasks in each domain and overall, only
the domains with a difference are shown, maximums are highlighted.

not utilized in this configuration because the properties required (Corollary 5.6) for this
operation are not proven for the mutex groups inferred by fd (the relation between fd

and fam is resolved in Chapter 7).

The algorithm h2? produces mutex groups useful for the creation of FDR variables,
therefore, we also compare this algorithm. In contrast to fd, Algorithm 6.1 utilizing
h2? runs until a fixpoint is reached because h2-mutexes are inferred from the grounded
operators. Operators producing dead-end states are not removed in this configuration
either because the mutex groups generated by h2? do not have the required properties
(see Section 5.3). In the case of fam-groups, we use the famfd variant of the algorithm
because it is less time demanding than fam in most cases.

To demonstrate the impact of the removal of dead-end operators, we have also eval-
uated Algorithm 6.1 without the removal of dead-end operators (i.e., with lines 7 and 8
of Algorithm 6.1 disabled) denoted by famdefd. We also tried the combination of h2? and
famfd where we use h2 to prune unreachable operators (i.e., in the place of lines 5 and 6
of Algorithm 6.1), but we also prune dead-end operators with famfd and use fam-groups
for the creation of FDR variables. The combination of h2? and famfd is denoted by famh

2

fd.

Table 6.1 shows a relative pruning power of each evaluated variant as a percentage of
operators and facts that were removed from the grounded PDDL. Note that the number of
removed dead-end operators for famfd does not necessarily equal to the difference between
the number of removed operators by famdefd and famfd. The reason is that the pruning

6.2. EXPERIMENTAL EVALUATION 51

algorithm runs in cycles and the removal of some dead-end operators can cause the removal
of more operators in the next cycle because a different set of mutex groups is inferred.
Furthermore, famfd report more removed dead-end operators than famh

2

fd in some cases,
because the pruning using h2 precedes the pruning of dead-end operators.

Considering the relationship between h2-mutexes and fam-groups, h2? must always
remove a superset of operators of those removed by famdefd, but the same does not hold
for famfd because of its ability to detect dead-end operators. Similarly, considering the
results presented in Section 5.5.1, where it was shown that fd produced a subset of fam

mutex groups, the operators removed by fd must be a subset of the operators removed
by famdefd, famfd and, thus, also by h2?. Finally, famh

2

fd necessarily removes a superset of
operators removed by both h2? and famfd, because it combines both of these methods.

The worst performance, in terms of the removed operators, was shown by fd, which
was expected given the results presented in the previous sections. The most interesting
results were measured in airport, barman, floortile, maintenance, parcprinter, and trucks
domains, where the detection of dead-end operators significantly increased the number
of removed operators in contrast to h2?. The main question now is how these results
translate into the number of solved tasks.

The coverage over all tested domains is reported in Table 6.2. Note, that in the
petri-net-alignment domain, no task was solved by famfd, fam

de
fd, or famh

2

fd, because the
inference of fam-groups consumed all allocated time. The lowest coverage overall was
recorded for the planner with fd for all tested heuristics. This indicates that the shorter
time spent in the inference and pruning by fd does not compensate for less informative
mutex groups and more sparse pruning. The less concise representation of states results
in higher memory requirements and more operators in the planning tasks result in wider
branching during a state space exploration and less informed heuristics.

Comparison of famfd and famdefd clearly shows that pruning of dead-end operators pays
off: famfd has higher (or equal) coverage than famdefd in all domains for all heuristics except
for lmc and pot-all in the airport domain and for lmc in the nomystery domain. In both
cases, the reason is that the fixpoint pruning of dead-end operators took too much time.
The increase of coverage by famfd in comparison to famdefd (and by famh

2

fd in comparison to
both famfd and famdefd) corresponds to more effective pruning because all these methods
use the same set of fam-groups for the construction of FDR variables.

For lmc and pot-all, h2? solved more tasks than famdefd and famfd overall, but note that
the results for pot-all are almost identical with famfd and h2?. For ms, however, famfd
solved significantly more tasks than h2? because of more concise encoding of FDR vari-
ables, which resulted in more informed abstractions computed faster as was demonstrated
in Section 5.5.4 also. The best results were recorded for famh

2

fd which managed to repro-
duce the best coverage of h2? and famfd in most domains. So it seems that the increased
computational time of famh

2

fd rarely impacted the number of solved task negatively.

6.2.2 Forward and Backward Pruning

In the previous section, we have experimentally evaluated the pruning of planning tasks
using mutex groups inferred in progression. In this section, we evaluate the pruning
technique proposed by Alcázar & Torralba (2015) that alternates between pruning in pro-
gression and regression using h2. In both directions, h2-mutexes are inferred and used for
disambiguation (Alcázar et al., 2013) of operators that helps to identify unreachable oper-
ators. Besides the detection of operators having preconditions in contradiction with some

52CHAPTER 6. PRUNING TASKS WITH FACT-ALTERNATING MUTEX GROUPS

domain perc. of removed operators perc. of removed facts

fd famfd famh
2

fd atfd atfam fd famfd famh
2

fd atfd atfam
agricola18 (20) 0.00 14.36 63.57 63.57 63.57 0.00 3.80 4.35 4.35 4.35
airport04 (21) 0.00 17.46 62.56 77.12 77.12 0.00 47.04 50.78 62.80 62.80
barman11 (20) 16.09 43.19 53.14 26.92 53.97 0.00 18.76 18.76 0.00 19.48
barman14 (14) 15.53 44.48 53.97 25.58 55.46 0.00 21.26 21.26 0.00 22.59
caldera18 (20) 0.00 9.68 9.68 67.56 67.56 0.00 34.26 34.26 38.20 38.20
cavediving14 (20) 0.00 0.00 0.27 0.27 0.27 0.00 2.27 2.27 2.27 2.27
depot02 (22) 4.12 4.12 24.26 24.26 24.26 2.49 2.49 2.49 2.49 2.49
driverlog02 (20) 0.00 2.04 2.04 2.04 2.04 0.00 2.48 2.48 2.48 2.48
floortile11 (20) 0.00 22.96 22.96 37.88 37.88 0.00 20.07 20.07 20.07 20.07
floortile14 (20) 0.00 22.83 22.83 37.96 37.96 0.00 22.54 22.54 22.54 22.54
freecell00 (80) 0.01 0.02 0.06 0.06 0.06 0.00 0.00 0.00 0.00 0.00
logistics00 (28) 0.00 7.92 7.92 7.92 7.92 0.00 8.12 8.12 8.12 8.12
logistics98 (34) 0.00 19.74 19.74 19.74 19.74 0.00 23.16 23.16 23.16 23.16
maintenance14 (5) 0.00 21.53 21.53 6.25 21.53 0.00 6.92 6.92 6.92 6.92
mprime98 (35) 0.00 0.00 11.50 11.50 11.50 0.00 0.00 0.69 0.69 0.69
mystery98 (30) 0.00 0.02 36.89 38.85 39.41 0.00 2.47 33.20 38.08 38.63
nomystery11 (20) 0.00 0.00 23.25 23.26 23.26 0.00 1.13 6.18 6.25 6.25
organic-synth18 (8) 0.00 93.13 95.68 98.67 98.67 0.00 61.89 69.21 71.04 71.04
parcprinter08 (30) 0.00 63.77 68.66 56.61 71.92 0.00 51.80 51.80 51.78 51.80
parcprinter11 (20) 0.00 62.75 67.39 57.85 70.49 0.00 51.11 51.11 51.11 51.11
parking11 (20) 3.57 7.13 7.13 7.13 7.13 0.00 3.35 3.35 3.35 3.35
parking14 (20) 3.78 7.56 7.56 7.56 7.56 0.00 3.53 3.53 3.53 3.53
pathways06 (30) 0.00 2.30 2.30 2.30 2.30 0.00 26.70 26.70 26.70 26.70
pegsol08 (30) 0.00 11.97 16.29 17.00 18.41 0.00 8.15 8.56 9.28 10.34
pegsol11 (20) 0.00 5.68 10.27 5.43 11.30 0.00 1.90 1.90 0.10 2.70
pipesw-notank04 (50) 0.60 0.60 5.51 5.51 5.51 0.62 0.62 3.29 3.29 3.29
pipesw-tank04 (50) 4.26 5.25 5.26 5.29 5.29 0.53 5.80 5.80 5.85 5.85
psr-small04 (50) 0.00 15.49 16.62 16.62 16.62 0.00 27.91 29.94 29.94 29.94
rovers06 (40) 0.00 23.41 23.41 23.41 23.41 0.00 29.08 29.08 29.08 29.08
satellite02 (36) 0.00 2.19 2.19 2.19 2.19 0.00 24.71 24.71 24.71 24.71
scanalyzer08 (30) 0.41 35.27 35.28 35.28 35.28 0.00 0.00 0.00 0.00 0.00
scanalyzer11 (20) 0.72 33.05 33.05 33.05 33.05 0.00 0.00 0.00 0.00 0.00
snake18 (20) 0.00 11.41 11.59 11.59 11.88 0.00 11.02 11.02 11.02 11.02
sokoban08 (30) 0.00 0.02 0.29 22.89 22.89 0.00 16.75 16.78 25.84 25.84
sokoban11 (20) 0.00 0.03 0.38 26.67 26.67 0.00 15.91 15.96 26.87 26.87
spider18 (16) 0.00 5.48 15.02 15.02 15.02 0.00 1.43 4.52 4.52 4.52
tetris14 (14) 0.00 92.65 92.65 92.65 92.65 0.00 68.12 68.12 68.12 68.12
tidybot11 (20) 0.00 0.17 42.89 42.89 42.89 0.00 29.70 39.56 39.56 39.56
tidybot14 (20) 0.00 0.15 36.68 36.68 36.68 0.00 30.03 37.02 37.02 37.02
tpp06 (30) 0.00 40.26 61.82 61.82 61.82 0.00 14.82 21.04 21.04 21.04
trucks06 (30) 0.00 89.10 89.32 23.51 89.32 0.00 89.45 89.45 89.45 89.45
woodworking08 (30) 0.00 8.64 52.27 52.76 52.76 0.00 11.51 11.71 12.19 12.19
woodworking11 (20) 0.00 7.95 52.66 53.13 53.13 0.00 11.08 11.34 11.76 11.76
zenotravel02 (20) 0.00 0.21 0.21 0.21 0.21 0.00 1.22 1.22 1.22 1.22
overall (1628) 0.60 12.45 18.33 16.88 19.00 0.15 20.96 22.42 22.83 23.02

Table 6.3: Percentage of removed operators and facts for tasks in which all methods fin-
ished within the time and memory limits, only the domains with a difference are shown.
Left: Percentage of removed operators per domain and over all domains, maximums high-
lighted. Right: Percentage of removed facts per domain and over all domains, maximums
highlighted.

mutex group, disambiguation can also extend preconditions and effects with facts that
must hold because all other options are in contradiction with the known mutex groups.
So, for example, consider two variables v1 and v2, and an operator with a precondition
where v1 is set to some value f1 and v2 is not set. If all values of v2, except some value f2,
are mutex with the value f1, then the disambiguation of this operator sets the variable v2

to the value f2, because it is the only viable option.

Since the algorithm proposed by Alcázar & Torralba (2015) works with tasks encoded
in FDR, we experimentally evaluated two variants of this algorithm. The variant that
uses mutex groups inferred by fd for construction of FDR will be denoted as atfd, and
the variant that uses famfd will be denoted as atfam. These two variants are compared
with fd as a baseline and with our algorithm famfd and famh

2

fd.

Table 6.3 shows the percentage of removed operators and facts. (Note that the numbers
for fd, famfd, and famh

2

fd may be a little bit different than in Table 6.1, because we count
only the tasks in which all variants finished within the time and memory limits.) Overall,
there is only a small difference between famh

2

fd and the variants that use h2 in regression

6.2. EXPERIMENTAL EVALUATION 53

domain lmc pot-all ms

fd famfd famh
2

fd atfd atfam fd famfd famh
2

fd atfd atfam fd famfd famh
2

fd atfd atfam
agricola18 (20) 0 0 0 0 0 1 2 1 1 1 3 10 7 3 7
airport04 (50) 29 23 21 29 28 23 22 20 30 27 16 19 19 22 21
barman11 (20) 4 4 8 4 8 8 8 8 8 8 8 8 8 8 8
barman14 (14) 0 0 2 0 2 3 3 3 3 3 3 3 3 3 3
caldera18 (20) 8 12 12 12 12 8 12 12 12 12 9 12 12 12 12
depot02 (22) 7 7 7 7 7 7 7 11 11 11 7 7 11 11 11
floortile11 (20) 8 8 8 14 14 6 6 6 8 8 4 7 7 8 8
floortile14 (20) 8 8 8 20 20 3 5 5 8 8 2 5 5 8 8
freecell00 (80) 15 15 15 15 15 40 64 65 41 65 20 61 61 20 61
logistics00 (28) 20 20 20 20 20 17 19 19 19 19 20 20 20 20 20
mprime98 (35) 24 24 25 25 25 24 24 24 24 24 24 24 24 24 24
mystery98 (30) 17 17 19 17 17 17 17 19 17 17 17 17 18 17 16
nomystery11 (20) 15 15 17 15 17 14 14 14 14 14 20 20 20 20 20
organic-synth18 (20) 10 9 8 10 9 10 9 8 10 9 9 9 8 10 9
parcprinter08 (30) 19 22 22 22 23 22 27 27 23 27 27 27 27 27 27
parcprinter11 (20) 14 17 17 17 18 16 19 19 18 19 20 20 20 20 20
petri-net-align18 (20) 9 0 0 9 0 7 0 0 7 0 7 0 0 7 0
pipesw-notank04 (50) 18 18 18 18 18 20 20 21 20 21 22 22 22 22 22
pipesw-tank04 (50) 13 13 13 13 13 17 18 17 17 18 15 16 16 15 16
psr-small04 (50) 48 49 49 49 49 50 50 50 50 50 50 50 50 50 50
rovers06 (40) 7 9 9 9 9 5 7 7 7 7 6 8 8 8 8
satellite02 (36) 7 7 7 7 7 5 6 6 6 6 6 7 7 7 7
scanalyzer08 (30) 16 17 17 17 17 13 13 13 13 13 13 13 13 13 13
scanalyzer11 (20) 13 14 14 14 14 10 10 10 10 10 10 10 10 10 10
snake18 (20) 7 7 7 7 7 14 13 13 14 13 7 15 15 6 15
sokoban08 (30) 30 30 30 30 30 28 28 28 30 30 30 30 30 30 30
spider18 (20) 11 10 11 11 11 12 11 13 15 13 6 11 12 6 12
tetris14 (17) 6 9 9 9 9 13 16 16 12 16 2 11 11 10 11
tidybot11 (20) 14 14 17 17 17 14 14 14 14 14 8 13 16 11 16
tidybot14 (20) 10 10 13 13 13 10 10 10 10 10 0 3 9 4 9
transport11 (20) 7 6 6 7 6 6 6 6 6 6 6 6 6 6 6
trucks06 (30) 8 13 13 12 13 7 14 14 12 14 5 9 9 9 9
visitall11 (20) 11 12 12 12 12 16 17 17 17 17 9 9 9 9 9
visitall14 (20) 5 6 6 6 6 13 13 13 13 13 3 4 4 4 4
woodworking08 (30) 19 23 23 24 23 13 13 14 14 14 17 20 20 20 20
woodworking11 (20) 13 16 15 16 15 8 8 9 9 9 11 14 14 14 14
Σ (1697) 841 855 869 898 895 868 913 920 911 934 827 925 936 879 941
Σ \ petri-net-al18 (1677) 832 855 869 889 895 861 913 920 904 934 820 925 936 872 941

Table 6.4: Comparison of different algorithms used for pruning of the planning tasks and
the inference FDR variables. Number of solved tasks in each domain and overall, only
the domains with a difference are shown, maximums are highlighted.

(atfd and atfam). However, there are domains in which the use of h2 in regression makes
a big difference. For example, both atfd and atfam pruned significantly more operators
than famfd in airport, caldera, floortile, or sokoban. But in the barman, parcprinter,
pegsol, or trucks domains, famh

2

fd pruned more operators than atfd, which demonstrates
how important is to have information-rich mutex groups for computing disambiguation
in the regression h2.

Table 6.4 shows a number of solved tasks for lmc, pot-all, and ms (the results for
fd, famfd, and famh

2

fd are the same as in Table 6.2, but we repeated them for easier
comparison). As in the previous cases, variants using fam-groups were not able to solve
any task in the petri-net-alignment domain, because the inference of fam-groups took the
whole time limit.

For lmc, atfd achieved best results overall, but atfam is slightly better without the
petri-net-alignment domain. The most difference between famh

2

fd and atfd is mainly due
to the floortile domain which corresponds to the increased number of pruned operators
(cf. Table 6.3). The results for atfd and atfam are very similar. The main difference is
due to the barman domain which, again, corresponds to more effective pruning due to the
use of fam-groups for disambiguation.

For pot-all, the difference between the compared methods roughly corresponds to the
results in pruning (cf. Table 6.3). The difference between atfd and atfam in the tetris and
freecell domains corresponds to the different encoding of FDR variables due to a different
set of mutex groups (cf. Table 5.6). Overall, atfam solved more tasks than atfd, but most

54CHAPTER 6. PRUNING TASKS WITH FACT-ALTERNATING MUTEX GROUPS

of the difference was measured in the freecell domain.
The results for the merge-and-shrink heuristic (ms) show that having a concise encod-

ing of FDR variables is as important as pruning for the abstraction heuristics. All variants
using fam-groups solved more tasks than atfd even if we do not consider the freecell do-
main (where fam-groups-based methods solved 41 more tasks than both fd and atfd).
Pruning has, however, also a significant impact on the number of solved tasks. Table 6.4
shows a significant increase from fd to atfd, and also less significant increase from famh

2

fd

to atfam. Overall, using fam-groups proved to be useful for the pruning with h2 also in
regression, because a rich set of mutex groups in the combination with disambiguation
can increase pruning power similarly to the pruning of dead-end operators evaluated in
the previous section.

6.3 Summary

As an example of applicability of fam-groups, we have proposed a pruning algorithm that
removes facts and operators from a planning task if they are not useful for solving the
task. The algorithm was evaluated with three different state-of-the-art heuristics and
the results indicate a substantial increase in the overall coverage in some of them. In
particular, the ability of fam-groups to detect dead-end states proved to be crucial in
the pruning of planning tasks and more concise encoding of the tasks in FDR positively
impacted abstraction-based heuristics.

We also compared our algorithm with the state-of-the-art algorithm proposed by
Alcázar & Torralba (2015) for pruning using h2-mutexes inferred both in progression
and regression. This algorithm achieves even better results than our algorithm, because
of the h2-mutexes inferred in regression, whereas fam-groups in regression turned out to
be useless for pruning. However, we have shown that using fam-groups for the construc-
tion of variables in FDR further increases the number of operators removed by Alcázar
& Torralba’s method, because it improves the disambiguation process.

Chapter 7

Lifted Mutex Group

Although classical planning problems are often described in the (schematic) Planning
Domain Definition Language (PDDL) (McDermott, 2000), i.e., in the lifted representation,
most planners operate with a (non-schematic) ground representation such as STRIPS
(Fikes & Nilsson, 1971) or the finite domain representation (FDR or SAS+) (Bäckström &
Nebel, 1995). These planners need to employ a translation process, called grounding, that
transforms the lifted representation (PDDL) into STRIPS. The subsequent transformation
from STRIPS, where states are described as sets of facts, into FDR, where states are
assignments to a finite set of variables, requires an additional step of inference of mutex
groups.

The inference of mutex groups is an integral part of the process of construction of
a concise finite domain representation, because the inferred mutex groups allow us to
group sets of (STRIPS) facts into (FDR) variables so that each fact is not encoded as
a binary variable. Nowadays, the most commonly used translator from PDDL to FDR
is the translator from the Fast-Downward planning system (Helmert, 2006) described by
Helmert (2009).

In the previous chapter, we have shown that the inference of the maximum sized mutex
group is PSPACE-Complete, but we have also shown that there is a certain subclass of
mutex groups, called fact-alternating mutex groups (fam-groups), of which inference is
NP-Complete. In this chapter, we focus on the inference of schematic mutex groups
in the lifted representation, i.e., lifted mutex groups. We show that the lifted mutex
groups described by Helmert (2009) are always fam-groups after grounding because of the
constraints posed on their structure and not because of the proposed inference algorithm.
We propose an improvement of the Helmert’s inference algorithm that produces a richer
set of lifted fam-groups. We also utilize the operator-pruning properties of fam-groups,
described in Section 5.1 and Chapter 6, during the grounding phase and we show that
operators can be pruned even before the PDDL planning problem is fully grounded.

7.1 PDDL and Grounding to STRIPS

We consider the normalized non-numeric, non-temporal PDDL tasks without conditional
effects and negative preconditions, and with all formulas being conjunctions of atoms
(represented as sets of atoms). Since we will ground PDDL into STRIPS, we also split
effects of PDDL actions into add effects (positive literals) and delete effects (negative
literals) directly in the definition below to simplify the presentation.

In contrast to the normalization of PDDL tasks described by Helmert (2009), we do

55

56 CHAPTER 7. LIFTED MUTEX GROUP

not support axioms (derived predicates) and we keep and utilize PDDL types. We also
disregard conditional effects, but our implementation supports the full fragment of PDDL
that is used in deterministic tracks of International Planning Competitions (IPCs).

Definition 7.1. A normalized PDDL task is a tuple P = 〈B, T ,V,P ,A,ψI ,ψG〉 where
B is a non-empty set of objects, T is a non-empty set of types containing a default type
denoted by t0 ∈ T , objects and types are associated by a total function D : T 7→ 2B

such that D(t0) = B and for every pair of types ti, tj ∈ T it holds that D(ti) ⊆ D(tj)
or D(ti) ⊇ D(tj) or D(ti) ∩ D(tj) = ∅. V is a denumerable set of variable symbols, each
variable v ∈ V has a type τvar(v) ∈ T .
P is a set of predicate symbols, each predicate p ∈ P has arity ar(p) ∈ N and

an associated type τpred(p, i) ∈ T for every i ∈ {1, ..., ar(p)}. An atom is of the form
p(s1, . . . , sn), where p ∈ P is a predicate symbol, n = ar(p) is the arity of p, and each si
is either an object o ∈ D(τpred(p, i)), or a variable v ∈ V with D(τvar(v)) ⊆ D(τpred(p, i)).
For a given atom α = p(s1, . . . , sn), V[α] ⊂ V denotes a set of variables appearing in the
atom, i.e., V[α] = {s1, . . . , sn} ∩ V, and P [α] = p denotes the predicate of α. Given a set
of atoms X, we define V[X] =

⋃
x∈X V[x] and P [X] =

⋃
x∈X P [x]. A ground atom is an

atom α such that V[α] = ∅.
An action a ∈ A is a tuple a = 〈pre(a), add(a), del(a)〉 where pre(a), add(a) and del(a)

are sets of atoms, called preconditions, add effects, and delete effects, respectively.
By V[a] = V[pre(a)∪add(a)∪del(a)] we denote a set of variables appearing in the action.
For every pair of actions ai, aj ∈ A, ai 6= aj, it holds that V[ai] ∩ V[aj] = ∅. A ground
action is an action a such that V[a] = ∅.
ψI and ψG are sets of ground atoms, called initial state and goal, respectively.

Note that the type t0 corresponds to the default PDDL type “object”. The following
definition describes the process of grounding, i.e., replacing all variables with objects of
the corresponding type.

Definition 7.2. Given a set of variables V ⊆ V, a grounding γ restricted to V is a
function γ : V ∪ B 7→ V ∪ B such that γ(v) ∈ D(τvar(v)) for every v ∈ V , and γ(v) = v
for every v ∈ V \ V , and γ(o) = o for every o ∈ B, i.e., γ maps each variable v ∈ V to an
object from its corresponding domain D(τvar(v)), and it is identity for everything else.

For an atom α = p(s1, . . . , sn), by γ〈〈α〉〉 we denote the atom p(γ(s1), . . . , γ(sn)). For
a set of atoms X, we define γ〈〈X〉〉 = {γ〈〈α〉〉 | α ∈ X}. For an action a ∈ A, we define
γ〈〈a〉〉 = 〈γ〈〈pre(a)〉〉, γ〈〈add(a)〉〉, γ〈〈del(a)〉〉〉.

A set of all groundings is denoted by G, and a set of all groundings restricted to V ⊂ V

is denoted by GV . For a set of groundings G ⊆ G and an atom or an action x we define
G〈〈x〉〉 = {γ〈〈x〉〉 | γ ∈ G}. For a set of groundings G ⊆ G and a set of atoms X we define
G〈〈X〉〉 =

⋃
γ∈G γ〈〈X〉〉. For an action a ∈ A, Ga denotes a shorthand for GV[a].

With the grounding defined, we can define the full grounding of a PDDL task as the
STRIPS planning task (Definition 3.1), which is constructed by replacing all variables
with all possible combinations of objects.

Definition 7.3. Given a normalized PDDL task P = 〈B, T ,V,P ,A,ψI ,ψG〉, the full
grounding of P is a STRIPS planning task Πfull

P = 〈F ,O, sI , sG〉 constructed as follows.
Let A =

⋃
a∈A Ga〈〈a〉〉, and X = ψI ∪ ψG ∪

⋃
a∈A(pre(a) ∪ add(a) ∪ del(a)). Then

F := {fx | x ∈ X}, sI := {fx | x ∈ ψI}, sG := {fx | x ∈ ψG}, and O := {oa | a ∈ A} with
pre(oa) = {fx | x ∈ pre(a)}, add(oa) = {fx | x ∈ add(a)} \ pre(oa), and del(oa) = {fx |
x ∈ del(a)} \ {fx | x ∈ add(a)}.

7.2. LIFTED MUTEX GROUPS 57

Note that the construction of add and delete effects keeps the operators well-formed
according to the definition of the STRIPS planning task (Definition 3.1), i.e., the con-
struction makes sure that add(o) ∩ del(o) = pre(o) ∩ add(o) = ∅ for every operator o.

The full grounding is not what would be used as a grounded representation of a PDDL
task in practice. However, we will use it as a tool to prove that a certain lifted structure, if
grounded, is a state invariant in the full grounding and therefore it is also a state invariant
in the grounded representation obtained by a more constrained grounding.

7.2 Lifted Mutex Groups

A lifted mutex group is a structure defined on the lifted (PDDL) level, that generates
mutex groups through the grounding process. When describing the translation from
PDDL to FDR, Helmert (2009) proposed an algorithm for the inference of lifted mutex
groups that are used for a construction of FDR variables after grounding. In this section,
we formalize lifted mutex groups and we show that the lifted mutex groups proposed by
Helmert (2009) are in fact lifted fam-groups, i.e., when they are grounded they always
form fam-groups in STRIPS.

We start with introducing an invariant candidate and invariant grounding that to-
gether provide a way to generate sets of facts in the corresponding ground (STRIPS)
representation. Then we say that the invariant candidate is a lifted mutex group if all
generated sets of facts are mutex groups. Finally, we provide a way to prove on the lifted
level that an invariant candidate is a lifted fam-group.

Definition 7.4. An invariant candidate is a tuple ν = 〈Vfix[ν],Vcnt[ν], atoms(ν)〉,
where Vfix[ν] ⊂ V is a finite set of fixed variables and Vcnt[ν] ⊂ V is a finite set of
counted variables such that Vfix[ν] ∩ Vcnt[ν] = ∅, and atoms(ν) is a finite set of atoms
such that V[atoms(ν)] = Vfix[ν] ∪ Vcnt[ν].

Definition 7.5. An invariant grounding is a tuple ξ = 〈γ,G〉, where γ ∈ G is a
grounding andG ⊆ G is a set of groundings. For an invariant candidate ν, we define a set of
all invariant groundingsHν = {〈γ,GVcnt[ν]〉 | γ ∈ GVfix[ν]}. For an invariant candidate ν and
a corresponding invariant grounding ξ = 〈γ,G〉 ∈ Hν , we define ξ〈〈ν〉〉 = γ〈〈G〈〈atoms(ν)〉〉〉〉.

Intuitively, replacing the fixed variables with different combinations of objects gener-
ates different sets of ground atoms, whereas replacing the counted variables generates the
ground atoms within each set.

For example, let at(v1:vehicle, c1:location) describe an invariant candidate ν con-
sisting of a single atom of a predicate at with arity 2, where the first argument, v1, is a
fixed variable with the type vehicle and the second argument, c1, is a counted variable
with the type location. If we have two objects, t1 and t2, of the type vehicle and
two objects, loc1 and loc2, of the type location, then applying all invariant groundings
from Hν generates the following two sets of ground atoms, {at(t1, loc1), at(t1, loc2)}
and {at(t2, loc1), at(t2, loc2)}.

For the invariant candidate at(c1:vehicle, c2:location) with both variables counted
and the same objects, the invariant groundings generate a single set of ground atoms,
{at(t1, loc1), at(t1, loc2), at(t2, loc1), at(t2, loc2)}.

Definition 7.6. Let Πfull
P = 〈F ,O, sI , sG〉 denote the full grounding of P. An invariant

candidate ν is a lifted mutex group (lifted fam-group) if for every invariant grounding
ξ ∈ Hν it holds that M = {fx | x ∈ ξ〈〈ν〉〉} ∩ F is a mutex group (fam-group) in Πfull

P .

58 CHAPTER 7. LIFTED MUTEX GROUP

Now we have defined lifted mutex groups and we know that if we find them on the
lifted level, we can ground them and use them on the ground (STRIPS) level as mutex
groups. In the following, we borrow the notions of balance and weight from Helmert (2009)
to formulate sufficient conditions for an invariant candidate to be a lifted fam-group.

Definition 7.7. An invariant candidate ν is balanced in action a ∈ A if for every
invariant grounding ξ ∈ Hν and every grounding γ ∈ Ga, it holds that for every α ∈
ξ〈〈ν〉〉 ∩ add(γ〈〈a〉〉) there exists α′ ∈ ξ〈〈ν〉〉 ∩ pre(γ〈〈a〉〉) ∩ del(γ〈〈a〉〉).

An invariant candidate ν is balanced if it is balanced in every action a ∈ A.

Note that the notion of balance, as we use it, considers each add effect in isolation.
That is, it may happen that two different ground atoms from the add effect can be both
balanced by the same ground atom from the precondition and delete effect, and we would
still call such invariant candidate balanced. That is why we use the notion of weight to
limit the number of ground atoms that can appear in the add effect.

Definition 7.8. The weight of the invariant candidate ν is

weight(ν) = max
ξ∈Hν ,a∈A,γ∈Ga

|add(γ〈〈a〉〉) ∩ ξ〈〈ν〉〉| .

The init-weight of the invariant candidate ν is

i-weight(ν) = max
ξ∈Hν
|ψI ∩ ξ〈〈ν〉〉| .

The weight of an invariant candidate is the maximum number of ground atoms of the
invariant candidate that can appear in the add effect of any ground action (and similarly
for the initial state). The invariant candidate is balanced in an action, if having a ground
atom in action’s add effect implies having another ground atom in its precondition and
delete effect. Therefore, if the weight is at most one and the invariant candidate is
balanced, then no ground action can increase the number of ground atoms in a state.
And if we combine this with the condition that at most one ground atom is present in
the initial state, then we must conclude that the invariant candidate is a lifted fam-group
(and therefore also a lifted mutex group).

Theorem 7.9. Let P denote a PDDL task, and let ν denote an invariant candidate. If
i-weight(ν) ≤ 1 and weight(ν) ≤ 1 and ν is balanced, then ν is a lifted fam-group.

Proof. Let Πfull
P = 〈F ,O, sI , sG〉 denote the full grounding of P, and let M = {Xξ | ξ ∈

Hν}, where Xξ = {fx | x ∈ ξ〈〈ν〉〉}. |M ∩ sI | ≤ 1 for every M ∈ M follows directly
from i-weight(ν) ≤ 1. From weight(ν) ≤ 1 it follows that |M ∩ add(o)| ≤ 1 for every
M ∈ M and every o ∈ O. Since ν is balanced, then for every operator o ∈ O and every
M ∈ M such that |M ∩ add(o)| = 1 it holds that |M ∩ pre(o) ∩ del(o)| ≥ 1, therefore
|M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)| for every M ∈M and every o ∈ O.

Note that the implementation of the tests for the weight and balance do not require
to iterate over all possible groundings. The tests can run in polynomial time, because we
can look for the renaming of the variables of actions and the invariant candidate. In the
case of the weight test, we must iterate (in the worst case) over all pairs of atoms in all
(lifted) add effects. And in the case of the balance test, we need to test the combination
of every add effect with every precondition that is also a delete effect.

7.3. PRUNED GROUNDING 59

The details are described by Helmert (2009). In fact, we use the same reasoning
as Helmert: What he calls a monotonicity invariant corresponds here to the invariant
candidate ν that is balanced and with weight(ν) ≤ 1, i.e., the invariant that does not
increase the number of atoms in a state. Helmert’s inference algorithm first looks for
monotonicity invariants without considering the initial state, and only after the problem
is grounded, the monotonicity invariants are grounded and checked against the initial
state to form mutex groups.

We improved upon Helmert’s findings by showing that this kind of invariant is not
only a (lifted) mutex group, but specifically a (lifted) fam-group. This means that, as we
show in the next section, we can use the lifted fam-groups during the grounding process
for removing operators that are either unreachable, or that can generate only dead-end
states. Moreover, it also means that this kind of invariants always generates a subset of
mutexes obtainable from the h2 heuristic as we proved in Section 5.3.

7.3 Pruned Grounding

In this section, we move from the full grounding of PDDL tasks to the grounding that
uses relaxed reachability and utilizes pruning of operators that are either unreachable or
can lead only to dead-end states (dead-end operators).

We start with the definition of a relaxed grounding as a grounding where we keep
only relaxed reachable operators and facts, and we extend this notion with a pruning of
operators using a pruning function that maps the ground actions to 1 if they are to be
removed (or skipped during grounding), and to 0 otherwise.

Definition 7.10. Given a normalized PDDL task P = 〈B, T ,V,P ,A,ψI ,ψG〉 and a
pruning function ω : G〈〈A〉〉 7→ {0, 1}, the relaxed grounding of P pruned with ω is
a STRIPS planning task Πrelax

P,ω = 〈F ,O, sI , sG〉 constructed as follows.
Let L0 = ψI , G0 = ∅, A0 = ∅, and for every i ≥ 1 let Gi =

⋃
a∈AGi,a denote a

set of groundings such that Gi,a = {γ | γ ∈ Ga, pre(γ〈〈a〉〉) ⊆ Li−1, ω(γ〈〈a〉〉) = 0}, and
let Ai =

⋃
a∈AGi,a〈〈a〉〉 and let Li = Li−1 ∪

⋃
a∈Ai add(a). Finally let k ≥ 0 denote the

smallest number such that Lk = Lk+1. Then F := {fx | x ∈ Lk∪ψG}, sI := {fx | x ∈ ψI},
sG := {fx | x ∈ ψG}, and O := {oa | a ∈ Ak} with pre(oa) = {fx | x ∈ pre(a)}, add(oa) =
{fx | x ∈ add(a)} \ pre(oa), and del(oa) = {fx | x ∈ del(a) ∩ Lk} \ {fx | x ∈ add(a)}.

Since we want to use lifted fam-groups for finding out which operators can be pruned,
we need to make sure that (pruned) relaxed groundings preserve lifted fam-groups.

If we remove a set of operators and unreachable facts, then all mutex groups will be
preserved, because it can only make less states reachable. However, fam-groups are not
defined over the reachable state space, but over the input planning task, so we need to
make sure that the conditions from Definition 5.1 hold.

Removing operators preserves also fam-groups, because the second condition in Def-
inition 4.3 (|M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)|) must hold for all operators, therefore
it must also hold for the operators remaining after the removal. Removing unreachable
facts can change the operators, but only their delete effects because removing unreachable
facts from a precondition would mean that the corresponding operator is also unreach-
able. Therefore, pre(o) ∩ del(o) remains the same for all operators o, which is enough to
show that fam-groups are preserved in any relaxed grounding pruned with any pruning
function.

60 CHAPTER 7. LIFTED MUTEX GROUP

Theorem 7.11. Let P denote a PDDL task, let ν denote a lifted fam-group, let ω denote a
pruning function, and let Πrelax

P,ω = 〈F ,O, sI , sG〉 denote the relaxed grounding of P pruned
with ω. Then for every invariant grounding ξ ∈ Hν it holds that M = {fx | x ∈ ξ〈〈ν〉〉}∩F
is a fam-group in Πrelax

P,ω .

Proof. Let Πfull
P = 〈F ′,O′, sI , sG〉 denote the full grounding of P and let M ′ = {fx | x ∈

ξ〈〈ν〉〉}∩F ′ denote the corresponding fam-group in Πfull
P . Clearly F ⊆ F ′, andM ⊆M ′, and

every f ∈ F is relaxed reachable in Πrelax
P,ω or f ∈ sG, and for every operator o ∈ O it holds

that o is relaxed reachable in Πrelax
P,ω , and therefore there exists o′ ∈ O′ such that pre(o) =

pre(o′), add(o) = add(o′), and del(o) = del(o′)∩F . Therefore M ′ ∩ add(o′) = M ∩ add(o)
and M ′ ∩ pre(o′) = M ∩ pre(o) and thus also M ′ ∩ pre(o′) ∩ del(o′) = M ∩ pre(o) ∩
del(o) because pre(o) = pre(o′) ⊆ F . Therefore |M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)|
holds. Finally, since both Πfull

P and Πrelax
P,ω have the same initial state and M ⊆ M ′, then

|M ∩ sI | ≤ 1 holds.

Now we introduce a novel pruning technique on the lifted level that uses lifted fam-
groups to remove unreachable and dead-end operators during grounding, i.e., before the
(relaxed or full) grounding is explicitly constructed. In Definition 7.12, we define a pruning
function that uses lifted fam-groups (1.) to prune unreachable operators and (2.) to
prune dead-end operators (recall Corollary 5.5). In Theorem 7.13, we show that with this
pruning function, all plans are preserved.

Definition 7.12. Given a set of lifted fam-groups L, the fam-group pruning function
ωL is a pruning function such that for every a ∈ G〈〈A〉〉:

1. ωL(a) = 1 if there exist ν ∈ L and ξ ∈ Hν such that |pre(a) ∩ ξ〈〈ν〉〉| ≥ 2;

2. ωL(a) = 1 if there exist ν ∈ L and ξ ∈ Hν such that |del(a) ∩ pre(a) ∩ ξ〈〈ν〉〉| = 1
and |add(a) ∩ ξ〈〈ν〉〉| = 0 and |ψG ∩ ξ〈〈ν〉〉| ≥ 1;

3. ωL(a) = 0 otherwise.

Theorem 7.13. Let P denote a PDDL task, let Πfull
P = 〈F ,O, sI , sG〉 denote the full

grounding of P, let L denote a set of lifted fam-groups, and let Πrelax
P,ωL

= 〈F ′,O′, sI , sG〉
denote the relaxed grounding of P pruned with the fam-group pruning function ωL. And
for a given sequence of operators π = 〈o1, . . . , on〉, let π|F ′ = 〈o′1, . . . , o′n〉, where pre(o′i) =
pre(oi), add(o′i) = add(oi), and del(o′i) = del(oi) ∩ F ′ for every i ∈ {1, . . . , n}. If π is a
plan in Πfull, then π|F ′ is a plan in Πrelax

P,ωL
. And if π′ is a plan in Πrelax

P,ωL
, then there exists

a plan π in Πfull such that π|F ′ = π′.

Proof Sketch. In Definition 7.12, 1. avoids grounding of unreachable operators, because
they would be applicable only in states violating one of the fam-groups, i.e., in the un-
reachable states, and 2. avoids grounding of operators that can produce only dead-end
states (Corollary 5.5 and Theorem 7.11), therefore they cannot be part of any plan. The
rest of the reachable operators are the same in Πfull and Πrelax

P,ωL
except that operators in

Πrelax
P,ωL

does not have relaxed unreachable facts in their delete effects.

7.4 Inference of Lifted FAM-Groups

In this section, we introduce an extension of the algorithm proposed by Helmert (2009).
In a nutshell, Helmert’s algorithm is a “guess, check, and repair” algorithm that maintains

7.4. INFERENCE OF LIFTED FAM-GROUPS 61

a set of invariant candidates and, in each cycle, one candidate is tested against all actions.
If the candidate is balanced in all actions and the weight is at most 1, then it is proved to
be a monotonicity invariant and, after grounding, checked against the initial state whether
it forms a mutex group. If the candidate has the weight larger than 1, then the candidate
is thrown away. And finally, if the candidate is not balanced, it is refined in such a way
the balance test passes, and the refined candidate is put back into the set of candidates.

The initial candidates are created from all predicates. For each predicate p, ar(p) + 1
candidates are created so that one candidate has all variables fixed and the remaining
ar(p) candidates have one of the arguments set to a counted variable and the rest to fixed
variables.

The refinement of the candidate is done by taking the first action a in which the
balance test fails and the candidate is extended with an atom that covers one of the
atoms in the intersection of the precondition and delete effect so that the add effect is
balanced by the refined candidate. The newly added atom is always of a predicate that
is not yet part of the candidate, and the atom can contain at most one counted variable.

We improve this algorithm by the following:

(i) We allow any number of counted variables in all atoms.

(ii) We introduce new refinement techniques that allow us to refine also the candidates
that fail weight test: the refinement of types, and the refinement of counted vari-
ables.

(iii) We introduce a new refinement technique for the proved lifted mutex groups so that
the algorithm does not stop once an invariant candidate is proved to be a lifted
fam-group, but it allows to construct supersets of the proved lifted fam-groups.

Another difference is that we infer directly lifted fam-groups instead of proving mono-
tonicity invariants first. The reason is purely practical. Allowing any number of counted
variables can generate a huge number of candidates, but restricting the candidates to
those that has init-weight exactly one reduces the number significantly.

The main part of the algorithm is described as a pseudo-code in Algorithm 7.1. The
remaining parts are described in the text below. As already mentioned, testing whether
there exist groundings so that action atoms can be ground to the same atoms as invariant
candidate’s atoms can be done in a polynomial number of steps by renaming variables of
the atoms. If there exists such a renaming, we say that these atoms can be unified.

Initial Invariant Candidates For each predicate p ∈ P , one invariant candidate con-
sisting of a single atom p(c1, . . . , car(p)) with all variables being counted variables is cre-
ated. Such candidates almost always fail the weight test, but we have the refinement of
the counted variables, described below, that allows to change the candidate in such a way,
that the weight test is passed in the following cycles.

Refinement by Extension This type of refinement is the same as is used by Helmert
for recovering from a failed balance test, but we use it also for the refinement of the proved
lifted fam-groups. When we prove a lifted fam-group ν, the algorithm looks for actions
that cannot add any atom from ν, but it deletes something from ν. For these actions,
we try to extend ν with atoms from the add effect, because adding such atoms cannot
violate balance in these actions.

62 CHAPTER 7. LIFTED MUTEX GROUP

Algorithm 7.1: Inference of lifted fam-groups.

Input: A PDDL task P = 〈B, T ,V,P,A,ψI ,ψG〉
Output: A set of lifted fam-groups M

1 C ← {〈∅, {c1, . . . , car(p)}, {p(c1, . . . , car(p)}〉 | p ∈ P};
2 M ← {};
3 while |C| > 0 do
4 ν ←Pop(C);
5 if i-weight(ν) = 1 then
6 if weight(ν) ≤ 1 then
7 if ν is balanced then
8 M ←M ∪ {ν};
9 C ← C ∪ RefineProved(ν);

10 else C ← C ∪ RefineUnbalanced(ν) ;

11 else C ← C ∪ RefineHeavyAction(ν) ;

12 else C ← C ∪ RefineHeavy(ν, ψI) ;

13 return M ;
14 function RefineProved(ν)
15 C ← ∅;
16 for each a ∈ A s.t. both pre(a) and del(a) can be unified with some α ∈ atoms(ν),

but add(a) cannot be unified with atoms(ν) do
17 C ← C∪ RefineExtend(ν, add(a));
18 return C;

19 function RefineUnbalanced(ν)
20 Let a be an action s.t. ν is not balanced in a;
21 Let β ∈ add(a) be the atom that can be unified with the corresponding atom α

from ν;
22 C ← Refine types of variables V[α] so that β cannot be unified with the refined α;
23 return C∪ RefineExtend(ν, del(a));

24 function RefineExtend(ν, X)

25 C ← ∅;
26 for each δ ∈ X s.t. P[δ] 6∈ P[atoms(ν)] do
27 C ← C∪ Refine ν by extending it with an atom α of the predicate P[δ] s.t. δ

can be unified with α;

28 return C;

29 function RefineHeavyAction(ν)
30 Let a ∈ A be an action failing the weight test;
31 return RefineHeavy(ν, add(a));

32 function RefineHeavy(ν, X)

33 Let β1, β2, β1 6= β2, be two atoms from X that can be unified with the
corresponding atoms α1, α2 from ν;

34 C ← Refine types of variables V[α1] (V[α2]) so that β1 (β2) cannot be unified with
the refined α1 (α2);

35 if α1 = α2 then
36 C ← C∪ Refine counted variables from V[α1] so that {β1, β2} cannot be unified

with the refined α1;

37 return C;

For example, assume we have a proved lifted mutex group {at(v, c)} with the fixed
variable v and counted variable c (types are not important here). And let us assume that

7.5. EXPERIMENTAL EVALUATION 63

there is the action load with pre(load) = {at(v1, v2)}, del(load) = {at(v1, v2)}, and
add(load) = {in(v1, v3)}. This action removes the atom at(v1, v2), but does not add any
other atom from the corresponding lifted mutex group {at(v, c)}. So we can extend the
lifted mutex group with an atom of the predicate in, which is added by the action load,
resulting with the invariant candidate {at(v, c), in(v, c′)}.

Refinement of Variable Types Consider the atom p(v1:t1) with variable v1 of type
t1 and the atom p(v2:t2) with variable v2 of type t2 that is a proper sub-type of t1,
i.e., D(t2) ⊂ D(t1). Clearly, p(v1:t1) can be unified with p(v2:t2) because t2 is a sub-
type of t1. However, if we change the type t1 to some other proper sub-type t3 such
that D(t3) ⊂ D(t1) and D(t3) ∩ D(t2) = ∅, then p(v1:t3) can no longer be unified with
p(v2:t2) and the change is valid in the sense that the predicate p must accept variables
(objects) of type t3.

This idea of type refinement is used by our inference algorithm to fix the weight test.
If any candidate’s atom can be unified with some atom from an add effect or the initial
state, and the candidate’s atom has, in some argument, more general type than the other
atom, then we can decrease the weight by applying the change of types described above.

Refinement of Counted Variables This refinement simply changes counted variables
into fixed variables. If the weight test fails because two atoms from some add effect (or
the initial state) are covered by a single atom from the invariant candidate because of a
counted variable, then changing the counted variable to the fixed variable fixes the weight
test.

For example, consider an invariant candidate with a single atom p(v1, c1) with a fixed
variable v1 and a counted variable c1, and the add effect {p(w1, w2), p(w1, w3)}. Assuming
all variables have the same type, the invariant candidate can be unified with both atoms
from the add effect, because the invariant grounding can expand the counted variable
c1 into two different objects covering both w2 and w3. Changing c1 to a fixed variable,
however, prevents it, thus the weight test passes.

7.5 Experimental Evaluation

The grounding of PDDL tasks and the inference of lifted fam-groups was implemented1 in
C and experimentally evaluated on a cluster of computing nodes with Intel Xeon Scalable
Gold 6146 processors. We implemented both Helmert’s original algorithm, referred to as
H, and our improved algorithm, referred to as H+. Both H and H+ ran with the limit on
the number of considered invariant candidates set to 10 000. We used domains from all
IPCs from 1998 to 2018.

We compared the inferred (ground) fam-groups in terms of the mutex group cover
number, i.e., the minimum number of mutex groups needed to cover all facts, and the
number of fam-groups that were not found by other methods. We compare also to the
complete inference method described in Section 5.4 (Algorithm 5.1), denoted by F, because
it shows how close we are to the best possible results.

Table 7.1 shows results for problems from both optimal and satisficing track where
the computation of fam-groups by all methods finished within 5 minutes time and 8 GB
memory limit and also the mutex group cover number was computed within 1 hour. To

1https://gitlab.com/danfis/cpddl

64 CHAPTER 7. LIFTED MUTEX GROUP

domain
avg. rel. cover num. mutex groups
H H+ F H�H+ H+�H F�H F�H+

agricola (40) 0.70 0.47 0.35 0 40 627 587
airport (20) 0.73 0.72 0.72 0 54 1 525 1 471
barman (74) 0.88 0.19 0.19 0 1 640 1 640 0
cavediving (40) 0.73 0.73 0.22 0 40 1 272 1 232
cybersec (30) 0.94 0.72 0.39 26 162 528 1 566 1 372
depot (22) 0.12 0.12 0.12 0 0 222 222
freecell (80) 0.30 0.30 0.30 0 0 4 632 4 632
maintenance (25) 1.00 1.00 0.99 0 0 6 6
mprime (35) 0.10 0.10 0.10 0 0 3 3
mystery (30) 0.17 0.17 0.17 0 0 60 60
nomystery (40) 0.08 0.05 0.05 0 40 40 0
organic-synthesis (9) 1.00 0.83 0.62 0 47 1 415 1 368
parcprinter (70) 0.61 0.61 0.24 0 0 4 034 4 034
pegsol (70) 0.34 0.34 0.34 0 0 223 223
pipesworld (86) 0.58 0.58 0.50 0 0 939 939
rovers (60) 0.48 0.48 0.48 0 0 4 4
satellite (36) 0.49 0.49 0.45 0 0 252 252
scanalyzer (70) 0.18 0.18 0.18 0 0 172 172
snake (19) 0.74 0.74 0.34 0 0 1 553 1 553
sokoban (100) 0.20 0.20 0.20 0 0 8 8
spider (26) 0.43 0.43 0.21 0 818 2 151 1 333
tetris (32) 0.90 0.04 0.03 0 136 1 400 1 264
thoughtful (20) 0.55 0.55 0.42 0 0 1 023 1 023
tidybot (60) 0.98 0.63 0.63 0 429 656 227
tpp (25) 0.30 0.30 0.30 0 0 237 237
transport (140) 0.25 0.05 0.05 0 432 432 0
trucks (12) 0.86 0.06 0.06 0 180 1 092 912
woodworking (100) 0.58 0.58 0.57 2 1 151 1 906 757
caldera (40) 0.83 0.83 - 0 920 - -
citycar (40) 0.71 0.09 - 0 201 - -
flashfill (20) 0.21 0.11 - 0 61 964 - -
settlers (40) 0.96 0.95 - 0 140 - -
overall w/o CE (2493) 0.42 0.35 0.32 28 167 535 29 090 23 891
overall with CE (2673) 0.43 0.36 - 28 230 760 - -

Table 7.1: Left: the comparison of average C/F (the smaller is the better), where C is
the mutex group cover number and F is the number of facts. F is in bold if it is strictly
better than the other two, and H+ is in bold if it is strictly better than H. Right: for every
A�B, the number of fam-groups found by A that are not a subset of any fam-group found
by B. “overall w/o CE” counts only problems without conditional effects, and “overall
with CE” counts all problems: averages over all counted problems on left and sums on
right. H is Helmert’s algorithm; H+ is our improvement; F is a complete algorithm for all
maximal fam-groups.

deal with different sizes of problems, mutex group cover numbers are divided by the
number of facts for each problem and averaged within each domain. The domains with
conditional effects (under the middle horizontal line) do not contain results for F, because it
is not clear how to find a complete set of fam-groups without compiling conditional effects
away. Only domains with some difference are shown. Since F must always dominate both
H and H+, the numbers in the F column are in bold if they are strictly better than the
other two, and the numbers for H+ are in bold if they are strictly better than H.

The improvement by H+ in agricola, tetris, tidybot, and citycar was due to multiple
counted variables used in a single atom. The type refinement helped in nomystery, organic-
synthesis, and transport, where some predicates formed mutex groups only for certain
sub-types of their arguments. In airport, barman, trucks, settlers, and woodworking,
the combination of the type refinement and the extension of proved fam-groups provided
a richer set of mutex groups. In 20 domains both H and H+ found the complete set of
fam-groups, and in barman, nomystery, and transport only H+ found a complete set of
fam-groups.

H found some fam-groups not found by H+ in cybersec because of the limit on the
number of invariant candidates, and in woodworking because of the init-weight restriction

7.5. EXPERIMENTAL EVALUATION 65

domain
mutex + dead-end + h2 fw/bw
H H+ H H+ H H+

agricola (20) 0.00 0.00 0.00 0.00 64.99 65.13
airport? (45) 0.00 0.00 8.17 8.17 76.20 76.20
barman? (74) 15.42 15.42 15.42 45.95 25.50 57.83
blocks (35) 10.82 10.82 10.82 10.82 10.82 10.82
citycar? (40) 0.00 0.00 1.61 1.61 1.61 1.61
depot (22) 6.44 6.44 6.44 6.44 22.44 22.44
flashfill (18) 0.10 0.10 0.10 0.10 7.06 7.06
floortile? (70) 0.00 0.00 22.79 22.79 35.43 35.43
freecell (80) 0.01 0.01 0.01 0.01 0.06 0.06
organic-synthesis? (7) 0.00 11.44 14.14 23.11 90.85 90.85
parcprinter? (30) 0.00 0.00 40.83 40.83 70.00 70.00
parking (80) 3.09 3.09 3.09 3.09 6.19 6.19
pipesworld (100) 4.53 4.53 4.53 4.53 8.46 8.46
scanalyzer (30) 1.34 1.34 1.34 1.34 28.12 28.12
spider (15) 0.00 3.47 0.00 3.47 16.61 16.61
trucks? (30) 0.00 0.00 0.00 82.14 19.09 82.94
woodworking? (30) 0.00 0.00 10.08 10.08 51.41 51.41
overall from above (726) 3.31 3.49 8.35 15.01 24.03 29.97
overall (1987) 1.21 1.28 3.05 5.48 14.20 16.37

Table 7.2: The average percentage of removed operators, overall is the average over all
problems. Column “mutex”: lifted fam-groups used for detection of unreachable operators
(their preconditions are mutex); “+dead-end”: additional pruning of dead-end operators;
“+h2 fw/bw”: additional pruning using h2 in forward and backward with fam-groups
used for the disambiguation. Domains in which dead-end detection pruned additional
operators are starred.

we use in H+. If we did not set the limit on the number of invariant candidates and we
created one auxiliary type per each object, H+ would dominate H in all domains, but the
time spent in the inference would significantly increase. Note that the numbers of fam-
groups found by one method and not the other may sometimes be misleading (especially
for cybersec and flashfill), because there may be many overlapping fam-groups. So for
example, finding fam-groups {A,B}, {B,C} is reported as two fam-groups even if there
is a maximal fam-group {A,B,C} not found by that method.

The time spent in the inference was under a millisecond in 2159 out of 2673 tested prob-
lems for H+ (2304 for H), between one millisecond and one second in 485 (340) problems,
and more than a second for the remaining 29 (29) problems from the caldera, cybersec,
and flashfill domains. F was orders of magnitude slower (cf. Table 5.4 from Section 5.5.3).

The limit on the number of candidates (10 000) was reached only in the cybersec
domain for H, and in the caldera, cybersec, flashfill, and organic-synthesis domains for
H+. So, increasing the limit could provide more fam-groups only in these domains, but it
would also require more time to process all candidates.

As Table 7.1 shows (non-zero values in the F�H+ column), H+ is not complete with
respect to all maximal (ground) fam-groups. The reason is that the algorithm allows at
most one atom of each predicate in lifted fam-groups, and all variables are restricted to the
types defined in the input PDDL. So, for example, suppose we have three objects l1, l2, l3
of a type loc, there is no sub-type of loc, and the corresponding ground problem has
a maximal (ground) fam-group {at(l1), at(l2)}. This fam-group cannot be found by H+,
because the invariant candidate at(c:loc) (with a counted variable c) would correspond
to {at(l1), at(l2), at(l3)}. And even if there was a sub-type for each li, then the invariant
candidate {at(v1:l1), at(v2:l2)} (with fixed variables v1, v2) is not constructed by H+,
because it contains two atoms of the same predicate.

Next, we compared the pruning power of H, H+ and h2 heuristic in forward and back-
ward direction (Alcázar & Torralba, 2015) with fam-groups from H and H+ used for dis-
ambiguation. Table 7.2 shows the results for problems where all variants finished within

66 CHAPTER 7. LIFTED MUTEX GROUP

the 5 minutes time limit. The table lists only the domains in which at least one operator
was pruned during grounding or there was a difference between h2 with H and with H+.

The pruning of dead-end operators during grounding had effect in 7 domains (difference
between “mutex” and “+dead-end” columns). Overall, using H for pruned grounding
removes more than 3% operators and using H+ almost 5.5%. Moreover, inferring a richer
set of fam-groups using H+ provides more pruning power even for h2: about 2.1% more
operators are removed.

Lastly, we measured a coverage with the Fast Downward planner (FD) (Helmert, 2006),
where we switched the original translator from PDDL to FDR with our implementation,
used h2 fw/bw preprocessor, and set the time limit to 30 minutes and the memory limit
to 8 GB. For the satisficing track, we evaluated LAMA-11 (Richter & Westphal, 2010)
and FF (Hoffmann & Nebel, 2001) planners, but we did not find a significant difference
between H and H+. LAMA-11 with H+ solved two more problems overall, FF with H solved
one more problem overall, and the most notable difference was that FF with H+ solved 5
more problems in citycar.

For the optimal track, we used A? with the LM-Cut (lmc) heuristic (Helmert &
Domshlak, 2009), the merge-and-shrink (ms) heuristic with SCC-DFP merge strategy
and non-greedy bi-simulation shrink strategy (Helmert et al., 2014; Sievers et al., 2016),
the potential (pot-all) heuristic optimized for all syntactic states (Seipp et al., 2015), and
two non-portfolio winners of the last IPC 2018, Complementary1 (comp1) (Franco et al.,
2018), and Complementary2 (comp2) (Franco et al., 2017, 2018). The only difference for
lmc was that H+ solved three more problems in barman and one less in transport. For
pot-all, H+ solved three less problems in spider and two more in tetris.

The most interesting results were found with ms, comp1, and comp2 planners shown
in Table 7.3. The table also shows the results with the original translator from the
Fast Downward planner (fd) which implements H. However, there are some differences in
the grounding process (e.g., handling of negative preconditions and conditional effects,
deduplication of operators, or ordering of the unification steps), so we do not think fd is
directly comparable to H and H+, because it does not measure just the difference between
different sets of lifted fam-groups.

The most noticeable increase in coverage was found in the tidybot domain, where H

is not able to find mutex groups describing position of objects (base-pos, cart-pos, and
object-pos predicates) because it requires multiple counted variables in the corresponding
atoms and therefore these facts are encoded as binary variables in FDR. H+, however,
finds these mutex groups, which results in less and bigger variables, and therefore the
abstraction heuristics generate more informed abstractions faster than with H.

All planners from Table 7.3 use some variant of abstraction heuristic, where we ex-
pected to see the most difference because they depend on the complexity and the number
of inferred mutex groups. However, the implementation of ms and pattern databases
in FD uses FDR variables derived from fam-groups instead of fam-groups directly. We
think this approach possibly disregards some useful information from the overlapping
fam-groups that could improve the heuristic estimates.

Consider the following example. Say we have two mutex groups {a, b} and {a, c} in the
STRIPS planning task. The translation to FDR would translate these two mutex groups
to two FDR variables, v1 and v2, with domains dom(v1) = {a, b, t1} and dom(v2) = {c, t2},
where t1 and t2 stand for special “none-of-those” values meaning that neither a or b is set
in the case of t1, and that c is not set in the case of t2. Now note that:

(i) t2 is a single value that stands for both “a is set” (which is already represented in

7.6. SUMMARY 67

domain ms comp1 comp2
fd H H+ fd H H+ fd H H+

agricola18 (20) 3 3 3 9 8 8 6 7 8
airport04 (50) 24 24 24 27 27 27 27 28 27
barman11 (20) 8 8 8 8 8 8 8 8 10
barman14 (14) 3 3 3 3 3 6 3 4 5
caldera18 (20) 12 12 12 11 13 14 12 13 15
childsnack14 (20) 0 0 0 0 0 0 1 0 1
citycar14 (20) 14 16 16 10 15 16 13 16 16
data-network18 (20) 12 12 12 13 14 14 11 13 12
depot02 (22) 8 8 8 7 7 7 8 7 8
mprime98 (35) 24 24 24 23 22 22 24 24 23
mystery98 (30) 17 17 17 15 15 15 16 15 16
openstacks06 (30) 7 7 7 10 12 11 11 11 10
parcprinter08 (30) 23 23 23 24 24 23 23 23 24
parcprinter11 (20) 18 18 18 18 17 18 18 18 18
spider18 (20) 6 6 6 12 11 11 11 12 11
tetris14 (17) 11 11 11 11 11 12 13 13 13
tidybot11 (20) 9 9 18 18 18 19 17 17 20
tidybot14 (20) 2 2 13 14 14 19 13 14 19
tpp06 (30) 7 6 6 12 13 13 15 15 14
transport08 (30) 11 11 11 14 12 14 14 12 14
transport11 (20) 6 6 6 10 9 10 10 8 10
transport14 (20) 7 7 7 9 8 9 9 8 9
trucks06 (30) 9 10 10 14 13 13 10 12 13
visitall11 (20) 16 16 16 12 12 12 17 18 17
Σ from above (578) 257 259 279 304 306 321 310 316 333
blocks00 (35) 28 21 21 30 31 31 30 31 31
floortile14 (20) 8 8 8 17 17 17 20 19 19
freecell00 (80) 21 20 20 32 27 27 31 29 29
nurikabe18 (20) 12 12 12 12 11 11 11 10 10
openstacks14 (20) 3 3 3 14 13 13 14 14 14
organic-synthesis18 (20) 7 10 10 7 10 10 7 10 10
petri-net-alignment18 (20) 7 7 7 19 20 20 19 19 19
pipesworld-notankage04 (50) 20 22 22 17 18 18 25 25 25
pipesworld-tankage04 (50) 15 16 16 16 17 17 18 19 19
rovers06 (40) 7 7 7 14 13 13 13 13 13
woodworking11 (20) 13 13 13 20 19 19 19 20 20
Σ (1 757) 893 893 913 1 054 1 054 1 069 1 087 1 095 1 112

Table 7.3: The number of solved problems in the optimal track for selected planners. fd:
FD with the original translator. The top part lists domains where H and H+ differ.

the variable v1) and “neither a or c is set”.

(ii) Creating a synchronized product of atomic projections to these two variables will
result in abstract states such as {a, c}, {a, t2}, {t1, t2}, or {b, t2}. But {a, c} is
actually a mutex and we could infer that directly from the mutex groups, but not
from the FDR variables. In {a, t2}, t2 is implied by a because a is a mutex with c.
And in {t1, t2} and {b, t2}, t2 actually represents “neither a or c is set”.

All this information that could be useful for abstraction-based heuristics is lost in the FDR
variables unless we use also the mutexes from the original mutex groups. However, it is
an open question whether utilizing this information in, for example, the merge-and-shrink
heuristic would require some modifications in merge or shrink strategies.

7.6 Summary

Any translator from PDDL to FDR must, at some point, infer a set of mutex groups
in order to create FDR variables. The most commonly used translator (Helmert, 2009)
infers mutex groups on a lifted (PDDL) level and then grounds them as it grounds the task
into STRIPS. We proved that these lifted mutex groups are lifted fam-groups, i.e., when
grounded, they belong to the “easier” subclass of mutex groups introduced in Section 5.1.

Moreover, we showed how to use lifted fam-groups to reduce the number of opera-
tors during grounding by utilizing the ability of fam-groups to determine unreachable

68 CHAPTER 7. LIFTED MUTEX GROUP

and dead-end operators. The experimental evaluation on IPC domains confirmed that
operators are pruned in a sizable number of problems.

Finally, we proposed an extension of the Helmert’s (2009) algorithm that produces a
richer set of lifted fam-groups, which in turn increased the number of removed operators
during grounding and the overall number of solved tasks for the heuristic search with
abstraction heuristics.

Chapter 8

Strengthening Potential Heuristics

The most common approach to solving classical planning problems is a heuristic search.
In this chapter, we focus on the family of admissible heuristics called potential heuristics
(Pommerening et al., 2015a) that assign a numeric potential to each fact and the resulting
heuristic value for a given state is computed as a sum of the potentials of the facts in
the state. Pommerening et al. (2015a) showed that potential heuristics produce the same
heuristic value for a given state as the state equation heuristic (van den Briel et al.,
2007; Bonet, 2013) if they are optimized for each state individually, but, in practice, the
potentials for all facts are found only once before the search starts and then re-used during
the search in a very fast evaluation of states.

Since their introduction, potential heuristics are continuously studied. Seipp et al.
(2015) introduced several new optimization functions that provide ways to select different
sets of potentials in order to increase the heuristic values. New complexity measure for
classical planning tasks, called the correlation complexity, was introduced by Seipp et al.
(2016). It is based on a study of a dimensionality of features of potential heuristics, i.e.,
extending potentials from single facts to sets of facts. Pommerening et al. (2016) pro-
vided a detailed description of how to construct potential heuristics for high-dimensional
features.

We propose to use mutexes (and mutex groups as means to construct variables in finite
domain representation) to improve potential heuristics in two ways. First, we relax the
constraints describing potential heuristics by using mutexes and so-called disambiguation
(Alcázar et al., 2013) to infer which facts cannot be part of the goal states or states where
operators are applied. This leads to higher (or at worst the same) heuristic values for
all optimization functions, because the optimizer becomes less restricted in the search
for the best potentials. Second, we use mutexes in new optimization functions aiming at
more accurate estimations of the number of reachable states and thus improving average
heuristic values over all reachable states.

8.1 Background

We consider the finite domain representation (FDR) of planning tasks (Bäckström &
Nebel, 1995) (Definition 3.2), where states are represented as assignments to variables
with finite domains.

Definition 8.1. Let ΠV denote an FDR planning task. A heuristic h : RΠV 7→ R∪{∞}
estimates the cost of optimal s-plans. The optimal heuristic h?(s) maps each reachable

69

70 CHAPTER 8. STRENGTHENING POTENTIAL HEURISTICS

state s to the cost of the optimal s-plan or to ∞ if s is a dead-end state. A heuristic h is
called

(a) admissible iff h(s) ≤ h?(s) for every reachable state s ∈ RΠV ;

(b) goal-aware iff h(s) ≤ 0 for every reachable goal state s; and

(c) consistent iff h(s) ≤ h(oJsK) + c(o) for all reachable states s ∈ RΠV and operators
o ∈ O applicable in s.

It is well-known that goal-aware and consistent heuristics are also admissible. Note
that we define heuristics over the reachable states (instead of all states) because we intend
to use heuristics in the (forward) heuristic search and because we want to use state
invariants describing the reachable state space for an improvement of the heuristic values.
Note also that we allow negative heuristic values as is usual in the literature related to
potential heuristics, because it was shown it may be beneficial and there is no reason for
considering only non-negative heuristic values (Pommerening et al., 2015a).

In this chapter, we work with sets of mutexes. So, to simplify the notation we introduce
the following notion of a mutex-set.

Definition 8.2. Let ΠV denote a planning task with variables V and facts F . A set of
sets of facts M⊆ 2F is called a mutex-set if all of the following hold:

(a) every M ∈M is a mutex; and

(b) for every M ∈M and every f ∈ F it holds that M ∪ {f} ∈ M; and

(c) for every variable V ∈ V and every pair of facts f, f ′ ∈ FV , f 6= f ′, it holds that
{f, f ′} ∈ M.

In other words, a mutex-set is an upper set of a set of mutexes and it always contains
all mutexes that can be inferred directly from the variables of the FDR representation.
This allows us to write, for example, s ∈ M for a state s and a mutex-set M when we
want to say that s contains a subset of facts that is a mutex. But, of course, in practice
we keep the inferred mutexes as a set without explicitly constructing all supersets.

8.2 Disambiguation

When dealing with backward search, also known as regression, Alcázar et al. (2013) showed
that mutexes can be used for extending partial states p with a value of some variable V
not defined in p (V 6∈ vars(p)), if all but one value is a mutex with p. Alcázar & Torralba
(2015) re-used this idea for the pruning technique based on a fixpoint computation of h2

heuristic in both forward and backward direction. They found out that this process is
actually essential for the backward h2 heuristic to be able to infer any useful information.
We borrow and extend this notion, called disambiguation, in the following way.

Definition 8.3. Let ΠV denote a planning task with facts F and variables V , let V ∈ V
denote a variable, and let p denote a partial state. A set of facts F ⊆ FV is called a
disambiguation of V for p if for every reachable state s ∈ RΠV such that p ⊆ s it holds
that F ∩ s 6= ∅ (i.e., 〈V, s[V]〉 ∈ F).

8.2. DISAMBIGUATION 71

Algorithm 8.1: Single-fact fixpoint disambiguation.

Input: A planning task ΠV with variables V and facts F , a partial state p, and a
mutex-set M.

Output: A partial state p extended with disambiguations of size one.
1 do
2 p′ ← p;
3 for each V ∈ V do
4 DV ← FV \Mp;
5 if |DV | = 1 then p← p ∪DV ;
6 if |DV | = 0 then return “p is a mutex” ;

7 while p′ 6= p;

Clearly, every FV is a disambiguation of V for all possible partial states. Moreover, it
follows directly from the definition that if some F ⊆ FV is a disambiguation of V for some
partial state p then every f ∈ FV \ F must be a mutex with p, i.e., every state s such
that {f} ∪ p ⊆ s is unreachable. Therefore, if F is the empty set, then any state s such
that p ⊆ s is unreachable. So, as previously noted by Alcázar et al. (2013), we can use
empty disambiguations to prune unreachable operators (if a precondition of an operator
extends p), or to prove unsolvability of the planning task (if G extends p). Moreover, if
the disambiguation of V consist of exactly one fact, then the partial state p can be safely
extended with that fact, because it is the only value that can be assigned to the variable
V in any reachable state s ⊇ p.

Definition 8.4. Given a partial state p and a mutex-set M, we define a set Mp = {f |
f ∈ F , p ∪ {f} ∈ M} as the set of facts which M entails to be mutex with p.

Note that FV \Mp is a disambiguation of V for p.
Algorithm 8.1 encapsulates a use of disambiguation in a simple fixpoint algorithm.

On line 4, the domain of each variable is reduced by removing facts that are mutex with
the partial state p. On line 5, p is extended if there is only one possible fact that can
appear in a reachable state containing p. On line 6, the algorithm reports p as a mutex
if all facts from the variable’s domain are mutex with p.

We extend the notion of disambiguation described by Alcázar et al. (2013) and Alcázar
& Torralba (2015) in that we keep also the sets containing more than one fact and we
show in the next section how these sets can be used for strengthening potential heuristics.

Algorithm 8.2 shows an improved algorithm that computes disambiguations of all
variables for a given partial state p. The algorithm keeps track of facts that cannot be
part of a reachable state extending p (the set A). On line 7 the disambiguations are
restricted by removing these facts, and on line 8 the set A is expanded by those facts that
cannot be part of any reachable state extending any of p ∪ {f} for f ∈ DV .

Theorem 8.5. Algorithm 8.2 always produces a set of disambiguations of all variables
for the given partial state p.

Proof. The algorithm always terminates, because the sets DV , for every V ∈ V , can only
decrease in size in each cycle (line 7), therefore there is a fixpoint.

Now we show that in every step, every DV is a disambiguation of V for p. DV is
initialized with FV (line 1) which is a disambiguation of V for p by definition. Then DV

is changed only on line 7 by removing the set A. So it suffices to show that at every

72 CHAPTER 8. STRENGTHENING POTENTIAL HEURISTICS

Algorithm 8.2: Multi-fact fixpoint disambiguation.

Input: A planning task ΠV with variables V and facts F , a partial state p, and a
mutex-set M.

Output: A set of disambiguations D of all variables V for p.
1 DV ← FV for every V ∈ V;
2 A←Mp ; // A set of facts that are mutex with p

3 do
4 change ← False;
5 for each V ∈ V do
6 if DV \A 6= DV then
7 DV ← DV \A;
8 A← A ∪

⋂
f∈DV Mp∪{f};

9 change← True;

10 while change;
11 D← {DV | V ∈ V};

point, A contains only the facts that cannot occur in any reachable state s extending p,
i.e., A ∩ s = ∅. This is true for the initialization of A (line 2). A is updated on line 8 by
adding the set X =

⋂
f∈DV Mp∪{f}. Let f ′ ∈ X. By definition of X the fact f ′ cannot

occur in any reachable state extending any of partial states p ∪ {f} for f ∈ DV . Since
DV is a disambiguation of V for p, every reachable state s extending p extends p ∪ {f}
for some f ∈ DV . Therefore s ∩X = ∅.

Note that the mutex-set M contains all mutex pairs from all variables so for every
variable V ∈ vars(p) defined in the partial state p, DV is set to {〈V, p[V]〉} in the first
cycle DV is changed on line 7. Also note that if one disambiguation is found out to be
empty, and therefore p is proved to be mutex, then all disambiguations are gradually also
set to empty sets.

8.3 Potential Heuristics

Potential heuristics, introduced by Pommerening et al. (2015a), assign a numerical value
to each fact, and the heuristic value for a state s is then simply a sum of the potentials
of all facts in s.

Definition 8.6. Let ΠV denote a planning task with facts F . A potential function is
a function P : F 7→ R. A potential heuristic for P maps each state s ∈ RΠV to the sum
of potentials of facts in s, i.e., hP(s) =

∑
f∈s P(f).

Pommerening et al. (2015a) described a set of inequalities that are sufficient conditions
for the potential heuristic to be admissible, which can be formulated as the following
theorem.1

Theorem 8.7. Let ΠV = 〈V ,O, I, G〉 denote a planning task, P a potential function, and
for every operator o ∈ O, let pre?(o) = {〈V, pre(o)[V]〉 | V ∈ vars(pre(o)) ∩ vars(eff(o))}

1The original formulation uses planning tasks in the so-called Transition Normal Form, but the general
case is described in the technical report (Pommerening et al., 2015b).

8.3. POTENTIAL HEURISTICS 73

and vars?(o) = vars(eff(o)) \ vars(pre(o)). If∑
f∈G

P(f) +
∑

V ∈V\vars(G)

max
f∈FV

P(f) ≤ 0 (8.1)

and for every operator o ∈ O it holds that∑
f∈pre?(o)

P(f) +
∑

V ∈vars?(o)

max
f∈FV

P(f)−
∑

f∈eff(o)

P(f) ≤ c(o), (8.2)

then the potential heuristic for P is admissible.

Equation (8.1) makes sure that the sum of potentials is goal-aware, and Equation (8.2)
ensures consistency of the potential heuristic. The theorem, however, does not tell us
how to actually choose the potential function. Pommerening et al. (2015a) proposed to
formulate the inequalities as constraints of a linear program (LP) and then a solution for
any optimization function results in an admissible potential heuristic. The selection of
optimization functions is discussed in the next section.

For now, move your attention to the maxima over all facts of the undefined variables in
Equation (8.1) and (8.2). For the goal Equation (8.1), we do not know how the reachable
goal states actually look like, so we prepare for the worst case by using the maximum po-
tential over all facts of each undefined variable. Similarly for the operator Equation (8.2),
we do not fully know the reachable states where the operator is applicable. However, we
have demonstrated in the previous section that mutexes can be used for narrowing down
the unknown parts. So, we can use disambiguations to generalize Theorem 8.7 by the
following theorem.

Theorem 8.8. Let ΠV = 〈V ,O, I, G〉 denote a planning task with facts F , and let P

denote a potential function, and

(i) for every variable V ∈ V, let GV ⊆ FV denote a disambiguation of V for G s.t.
|GV | ≥ 1, and

(ii) for every operator o ∈ O and every variable V ∈ vars(eff(o)), let Eo
V ⊆ FV denote

a disambiguation of V for pre(o) s.t. |Eo
V | ≥ 1.

If ∑
V ∈V

max
f∈GV

P(f) ≤ 0 (8.3)

and for every operator o ∈ O it holds that∑
V ∈vars(eff(o))

max
f∈EoV

P(f)−
∑

f∈eff(o)

P(f) ≤ c(o), (8.4)

then the potential heuristic for P is admissible.

Proof. To show that the potential heuristic is goal-aware, we need to prove that for every
reachable goal state sG it holds that

∑
f∈sG P(f) ≤ 0. Let f = 〈V, v〉 ∈ sG. From (i), we

have f ∈ GV . Since for every GV and every f ∈ GV it holds that P(f) ≤ maxf ′∈GV P(f ′),
then from Equation (8.3) it follows that

∑
f∈sG P(f) ≤

∑
V ∈V maxf∈GV P(f) ≤ 0.

74 CHAPTER 8. STRENGTHENING POTENTIAL HEURISTICS

To show consistency, we need to prove that for every operator o ∈ O and every
reachable state s ∈ RΠV such that pre(o) ⊆ s it holds that

∑
f∈s P(f) −

∑
f∈oJsK P(f) ≤

c(o). Let t = (s ∩ oJsK) \ eff(o) be the part of s that is not affected by the operator o.
Then clearly,

∑
f∈s P(f) −

∑
f∈oJsK P(f) =

∑
f∈s\t P(f) −

∑
f∈oJsK\t P(f) =

∑
f∈s\t P(f) −∑

f∈eff(o) P(f), because oJsK \ t = eff(o). Furthermore, since vars(s \ t) = vars(eff(o)), it

follows that every f = 〈V, v〉 ∈ s\t belongs to Eo
V and consequently P(f) ≤ maxf ′∈EoV P(f ′).

Therefore (by Equation (8.4))
∑

f∈s\t P(f)−
∑

f∈eff(o) P(f) ≤
∑

V ∈vars(eff(o)) maxf∈EoV P(f)−∑
f∈eff(o) P(f) ≤ c(o). So hP is goal-aware and consistent and therefore admissible.

Note that the requirement on the non-empty disambiguations in (i) and (ii) is just to
simplify the theorem, because for every empty disambiguation we could either remove the
corresponding operator (if Eo

V is empty), or report the planning task unsolvable (if GV is
empty), as we already explained.

Clearly, Equation (8.3) generalizes Equation (8.1) because for every V ∈ vars(G) the
singleton {〈V,G[V]〉} is a disambiguation of V for G, and for every V ∈ V \ vars(G) the
set FV is a disambiguation of V for G. Thus Theorem 8.8 allows to use proper subsets of
FV for the variables undefined in G. Similarly, Equation (8.4) generalizes Equation (8.2)
because we can use the same reasoning for the preconditions of operators.

8.3.1 Transition Normal Form

Originally, potential heuristics were formulated for planning tasks in the so-called Transi-
tion Normal Form (TNF) (Pommerening & Helmert, 2015). A planning task is in TNF if
the goal is fully defined (vars(G) = V) and vars(pre(o)) = vars(eff(o)) for every operator o.
Any planning task ΠV = 〈V ,O, I, G〉 can be compiled into TNF as follows:

• Add a fresh value U to the domain of every variable.

• For every variable V ∈ V and every fact f ∈ FV , f 6= 〈V, U〉, add a new forgetting
operator of with pre(of) = {f} and eff(of) = {〈V, U〉} and the cost c(of) = 0.

• For every operator o ∈ O and every variable V ∈ V :

– If V ∈ vars(pre(o)) and V 6∈ vars(eff(o)), then add 〈V, pre(o)[V]〉 to eff(o).

– If V ∈ vars(eff(o)) and V 6∈ vars(pre(o)), then add 〈V, U〉 to pre(o).

• For every V ∈ V \ vars(G) add 〈V, U〉 to G.

There is a clear correspondence between the compilation into TNF and the LP for-
mulation of Equation (8.1) and (8.2) from Theorem 8.7 (Pommerening & Helmert, 2015).
When translating inequalities (8.1) and (8.2) to the LP constraints, we (a) create the LP
variable Xf for every fact f ∈ F (holding the potential P(f)), and (b) to deal with the
maxima, we create another auxiliary LP variable MV for every variable V ∈ V and add
the constraint Xf ≤ MV for every f ∈ FV . Then we can rewrite Equation (8.1) to the
constraint ∑

f∈G

Xf +
∑

V ∈V\vars(G)

MV ≤ 0, (8.5)

and similarly Equation (8.2) to constraints∑
f∈pre?(o)

Xf +
∑

V ∈vars?(o)

MV −
∑

f∈eff(o)

Xf ≤ c(o), (8.6)

8.4. OPTIMIZATION FUNCTIONS 75

for every operator o ∈ O, and look for the maximization over some optimization function.
Compare Equation (8.5) and Equation (8.6) to the constraints resulting from the planning
task compiled into TNF and you will find that we get exactly the same constraints where
LP variables MV correspond to the special value U added to every variable in TNF.

The generalization of Theorem 8.7 via disambiguations transposes also to the TNF.
Instead of creating a single fresh value U for every variable, we create fresh values UGV
and UEoV for every disambiguation GV and Eo

V , respectively. Then we use these values in
the same way U values are used in the original TNF formulation. There will be forgetting
operators for every UGV and UEoV that go over the facts in their respective disambiguations
rather than over all values from the corresponding domain. Instead of adding 〈V, U〉 into
operators’ preconditions, we add 〈V, UEoV 〉. And instead of adding 〈V, U〉 into the goal,
we add 〈V, UGV 〉.

Pommerening & Helmert (2015) showed that the compilation to TNF can produce
a planning task twice the size of the original one, in the worst case. With disambigua-
tions, the compilation to TNF can grow even more, but it is still polynomially bounded.
Although we choose disambiguations from the powerset 2F , the actual number of disam-
biguations is limited by the number of operators and the size of their preconditions. So,
the number of UGV values can be at most |V|, and the number of UEoV cannot be more
than |O| · |V|. The maximum number of forgetting operators then corresponds to these
limits.

However, the resulting representation can also be smaller than the original TNF,
because the disambiguations of size one can get rid of U values completely, and the dis-
ambiguations that are proper subsets of the corresponding FV produce fewer forgetting
operators. In fact, the experimental evaluation on the domains from International Plan-
ning Competitions (IPCs) shows that the representation with disambiguations is never
bigger than without disambiguations.

8.4 Optimization Functions

When Pommerening et al. (2015a) introduced potential heuristics, they used the opti-
mization function for the initial state

optI =
∑
f∈I

P(f). (8.7)

Maximization of optI subject to the constraints from Theorem 8.8 (or Theorem 8.7) yields
the highest possible heuristic value for the initial state. However, maximization of optI
does not provide an incentive for optimizing potentials of the facts that do not appear in
the initial state (at least not directly). Of course, one could recompute potentials for each
state reached during the search. That would always provide the best possible heuristic
value but it would also be too costly from the computational point of view.

Seipp et al. (2015) studied different optimization functions. One of their main contri-
butions is the “automatic diversification” algorithm for finding an ensemble of potential
heuristics constructed from a set of states sampled by random walks. We will experi-
mentally evaluate the effect of disambiguations on this variant. Another contribution was
the introduction of a family of optimization functions aiming at maximizing the average
heuristic value over all reachable states. And this is the obvious place where mutexes can
be utilized.

76 CHAPTER 8. STRENGTHENING POTENTIAL HEURISTICS

8.4.1 All States Potentials

The perfect optimization function of which maximization yields the maximum average
heuristic value over all reachable states is the weighted sum of the potentials over all
reachable states:

optR
ΠV

=
1

|RΠV |
∑

s∈R
ΠV

∑
f∈s

P(f). (8.8)

By reordering summands in Equation (8.8), optR
ΠV

can be written as
∑

f∈F αfP(f)
where the coefficient αf is just the probability that a randomly chosen reachable state
contains f . Consequently, by maximizing optR

ΠV
we look for potentials such that the

corresponding potential heuristic maximizes its expected value.
Listing all reachable states is, obviously, infeasible, and so is uniform sampling of

reachable states. So, as an approximation, Seipp et al. (2015) proposed to adopt the
approach of Haslum et al. (2007) and sample the states S ⊆ RΠV by random walks
starting from the initial state with a binomially distributed length of the walks centered
around the double of the maximum heuristic value for the initial state, leading to the
following optimization function:

optŜ =
1

|S|
∑
s∈S

∑
f∈s

P(f). (8.9)

Another proposed option was to count all syntactic states (i.e., all possible assignments
to variables):

optS =
∑
〈V,v〉∈F

1

|dom(V)|
P(〈V, v〉). (8.10)

This approach assumes the uniform distribution of the values within their respective
domains over all reachable states which is 1/ |dom(V)| for every fact 〈V, v〉.

We extend the idea of using all syntactic states by taking mutexes into account. Sup-
pose we want to estimate the number of states containing a fact f = 〈V, v〉 ∈ F . The
simplest estimate of the number of these (syntactic) states is to compute a product of
sizes of all variables’ domains except V , because the variable V is assumed to be already
set to v:

∏
V ′∈V\{V } |dom(V ′)|. This estimate is actually an upper bound on the true

number of reachable states containing f .
However, if we take mutexes into account, we could remove the facts that are mutex

with f from all domains and compute the product of sizes of these reduced domains. The
resulting estimate would necessarily be lower than (or equal to) the previous one. It would
be an upper bound too, because we are removing only the facts that are certainly not
part of the reachable states containing f . Therefore, we certainly get a better estimate.
Moreover, we can extend this idea to partial states, i.e., instead of asking how many
reachable states contain a single fact f , we can ask how many reachable states extend a
partial state p.

For a given number 1 ≤ k ≤ |V| and a partial state t we define a set P tk as the set
of all partial states of size k extending t. Further recall that for a mutex-set M and a
partial state p we defined the set Mp = {f | f ∈ F , p ∪ {f} ∈ M}.

Now we can estimate the number of reachable states extending a partial state p using
a given mutex-setM by the product

∏
V ∈V |FV \Mp|. Note that if p is a mutex (p ∈M),

thenMp contains all facts and the product is zero. Also, sinceM always contains mutex
pairs from all variables, then |FV \Mp| = 1 for all V ∈ vars(p) if p 6∈ M.

8.4. OPTIMIZATION FUNCTIONS 77

With all building blocks in place, we can define

Ckf (M) =
∑

p∈P{f}
k

∏
V ∈V

|FV \Mp| (8.11)

as an estimation of the number of reachable states containing the fact f while considering
mutex-setM and all partial states of size k. The corresponding optimization function is:

optkM =
∑

f=〈V,v〉∈F

Ckf (M)∑
f ′∈FV C

k
f ′(M)

P(f). (8.12)

That is, we choose a number k ≥ 1 and for every fact f and every partial state p of size
k containing f , we compute the estimation of the number of reachable states extending
p (the inner product in Equation (8.11)). To get the estimate for a single fact f , we
sum over the estimates for partial states p containing f (this is the number Ckf (M)).

Finally, for every variable V ∈ V we normalize the collection of Ckf (M) for f ∈ FV
so that it forms a probability distribution estimating the actual probability that a fact
f ∈ FV appears in a randomly chosen reachable state. In other words, instead of using
the uniform distribution as in Equation (8.10), i.e., 1/ |dom(V)|, we use mutexes and
estimate the number of states step-by-step for all partial states of size k and then sum
these counts to the final estimation.

8.4.2 Conditioned Ensemble of All States Potentials

Averaging sampled states S ⊆ RΠV , as in optŜ, is not the only way S can be used for a
construction of a potential heuristic. Seipp et al. (2015) proposed to use an ensemble of
potential heuristics, for example one potential heuristic per state from S, and then use
the maximum heuristic value from all potential heuristic as the heuristic value for the
given state.

The optimization for all reachable states optR
ΠV

tackles the problem of finding the
best potentials by maximizing the expected value of the sum of potentials for a randomly
chosen reachable state. However, if we somehow divide the whole reachable state space
into sets of states S1 ∪ . . . ∪ Sn = RΠV , then averaging over Si with optŜi would give
us better heuristic values (at average) for each set Si. Then we could use the ensemble
of potential heuristics optimized for optŜi for all i = {1, . . . , n} and the maximum of
heuristic values for a given state over all these heuristics should give us a better resulting
heuristic value. Intuitively, we can see this approach as being halfway between optR

ΠV
,

and computing potentials for each individual state. Unfortunately, we do not know how to
select the sets Si or how to sample them efficiently. We can, however, re-use the approach
to optkM in constructing a similar ensemble.

Taking the idea of using mutexes one step further, we can optimize for the maximum
average potentials over the states extending a partial state t. In other words, we can fix
the partial state t as a sort of selector for states and then use the same idea as for optkM
except that we count only the states extending t. We start with a slight modification of
Equation (8.11) by restricting the count to a given partial state t:

Kkf (M, t) =
∑

p∈Pt∪{f}
|t|+k

∏
V ∈V

|FV \Mp| . (8.13)

78 CHAPTER 8. STRENGTHENING POTENTIAL HEURISTICS

In words, Kkf differs from Ckf in that Kkf takes the partial states p of size |t|+ k extending
t ∪ {f} instead of the partial states of size k containing f . We also tacitly assume that
t ∪ {f} is a partial state, i.e., either f ∈ t or the variable V corresponding to the fact f
does not belong to vars(t). For the cases where V ∈ vars(t), we define Kkf (M, t) = 0.

The optimization function for a fixed partial state t is a small modification of Equation
(8.12) where we replace Ckf with Kkf :

optt,kM =
∑

f=〈V,v〉∈F

Kkf (M, t)∑
f ′∈FV K

k
f ′(M, t)

P(f). (8.14)

The remaining question is how to select the partial states t on which to condition
potential heuristics in the ensemble. Here, we evaluate only uniformly randomly sampled
partial states of size 1 and 2. However, the question left for future research is whether
we can use some sort of structural information, such as causal graphs or some kind of a
relation between mutexes, for the selection of the best possible sets.

8.4.3 Adding Constraint on Initial State

As already mentioned, the disadvantage of optimizing for the initial state (optI) is that
the optimization function does not provide an incentive to optimize the potentials that
are not part of the initial state. But it should provide good heuristic values in the
vicinity of the initial state, assuming the operators change only few facts at a time.
Conversely, the optimization for all states, in all variants, including optR

ΠV
, does not

target any particular state and the resulting heuristic values highly depend on what the
reachable state space actually looks like. For example, a huge number of goal states can
unintentionally decrease the average heuristic values even though the goal-awareness of
potential heuristics is explicitly enforced by a constraint and we actually want to push
the heuristic values higher for all states but the goal states.

We can, however, overcome this behaviour at least partially by combining the op-
timization for the initial state and for all states. Let hPI denote the potential heuristic
optimized for the initial state. Then using an optimization for all states (any discussed
variant) and imposing the additional constraint∑

f∈I

P(f) = hPI(I) (8.15)

will force the optimizer to find potentials that will produce a high heuristic value for the
initial state while maximizing average heuristic values for states containing facts that are
not part of the initial state. So, during the search, we should get more accurate heuristic
values from the beginning of the search and as we get farther from the initial state and
closer to the goal, the potentials optimized for the average case should take over.

This, of course, requires to compute the potentials twice. The first time for the heuris-
tic value hPI(I). And the second time for the all states potentials using Equation (8.15).

8.5 Experimental Evaluation

The evaluated methods were all implemented2 in C and experimentally evaluated with the
Fast Downward planner (Helmert, 2006) on a cluster of computing nodes with Intel Xeon

2https://gitlab.com/danfis/cpddl, branch icaps20-potentials

8.5. EXPERIMENTAL EVALUATION 79

Scalable Gold 6146 processors and CPLEX solver v12.9. The time and memory limits
were set to 30 minutes and 8 GB, respectively. Operators and facts are pruned with
the h2 heuristic in forward and backward direction (Alcázar & Torralba, 2015), and the
translation from PDDL to FDR uses the inference of mutex groups proposed in Chapter 7.
However, for the methods that require mutexes, we computed them again with the h2

heuristic because we can use only the forward direction for mutexes as per Definition 4.1
and we wanted to account for the increased computational demand for these methods.
We used all planning domains from International Planning Competitions (IPCs) from
1998 to 2018 excluding the ones containing conditional effects after translation (leaving
65 domains).

We refer to the compared variants of potential heuristics as follows:

• N: the variant without disambiguation,

• D: the multi-fact disambiguation (Algorithm 8.2),

• D1: the single-fact disambiguation (Algorithm 8.1),

• Init: the optimization for the initial state (optI),

• All: the optimization for all syntactic states (optS),

• MaxIA: the maximization over Init and All,

• Divn: the diversification algorithm with n samples,

• Ŝn: the optimization for n randomly sampled states (optŜ),

• Sn: the maximization over n potential heuristics each optimized for a randomly
sampled state,

• Mk: the optimization for all states considering inferred mutexes (optkM),

• Kkn: the maximization over n potential heuristics each optimized for all states con-

sidering mutexes and conditioned on a randomly sampled fact f (opt
{f},k
M).

• Lkn: the same as Kkn except partial states {f1, f2} of size two are sampled (opt
{f1,f2},k
M).

If the additional constraint on the initial state was used (Section 8.4.3, Equation (8.15)),
we append +I. We fixed seeds for random number generators in order to get comparable
results for the variants that use sampling. Divn and Ŝn are evaluated for n = 1000 to
compare them to the results of Seipp et al. (2015).

In Figure 8.1, we show scatter plots of the heuristic values for the initial state when
optimized for the initial state with and without disambiguation. The plots clearly show
the advantage of utilizing multi-fact disambiguation in comparison to both single-fact
disambiguation (right) and no disambiguation (left).

We tried to fit as many results comparing the use of disambiguations as possible into
Table 8.1 to show the positive effect of disambiguations on the number of solved tasks.
(We added the row with the sum without the freecell domain because this domain contains
considerably more planning tasks than other domains which may skew the overall results.)
Disambiguations decrease the coverage only in a few domains, but never overall. The most
significant decrease can be found in the blocks domain for Init and freecell00 for All,

80 CHAPTER 8. STRENGTHENING POTENTIAL HEURISTICS

1 10 102 103

N-Init

1

10

102

103

D
-I
n
i
t

1 10 102 103

D1-Init

Figure 8.1: Heuristic values for the initial state with the zero heuristic values filtered
out and the heuristic values in the parcprinter domain scaled by 10-4 to keep the plots
compact.

but otherwise the decrease is just one or two fewer problem solved. Overall, the increase
in coverage due to the (multi-fact) disambiguation ranges from 1.6% for M2 to 3.8% for
All+I and it is two or more percent for all methods proposed by Seipp et al. (2015)
(similar results are obtained also if freecell00 is not counted).

The only difference between M1 and M2 is in the parcprinter domains (in favor of
M1) which suggests that increasing k increases the computational intensity but does not
provide much more accurate estimates of the number of reachable states. Overall, both
M1 and M2 have higher coverage than All (with or without disambiguations), but most
of the difference is due to the freecell domain. If the freecell domain is filtered out, All
solves more tasks. The average from a sample of 1000 states (Ŝ1k) also seems to provide
better results (both overall and in per-domain comparison).

However, constructing ensembles of 100 or 50 potential heuristics with K1
100 and K1

50

results in a higher coverage than All, M1, M2, and Ŝ1k, which all optimize for the average
state. The coverage is also higher than Div1k and S100 that maximize over an ensemble
of potential heuristics as Kkn does. We should note here that Kkn conceptually sits between
optimization for the average state and maximization over a sample of states, because Kkn
tries to do a little bit of both.

Table 8.2 compares the sampling based methods (with disambiguations) for different
numbers of samples. The more samples are used in the ensemble the longer it takes to
evaluate a state during the search and therefore the advantage of using potential heuristics
diminishes. The sweet spot for Sn seems to be at 100 samples and it is at 50 samples for
the methods using mutexes. It also seems that increasing k (D-K1

n vs. D-K2
n, and D-L1

n vs.
D-L2

n) does not provide better heuristic values, and the same holds for increasing the size
of sampled partial states (D-K1

n vs. D-L1
n and D-L2

n).
The best results were achieved with adding the constraint on the heuristic value of

the initial state (Section 8.4.3, Equation (8.15)) in combination with disambiguations.
In Table 8.1, for the “+I” columns, we added (a) “◦” to indicate that the coverage in
the respective domain is higher than for the corresponding variant without the constraint
(without +I); (b) “+” to indicate a higher coverage than the Init variant; (c) “⊕” if both
of the previous cases hold at the same time; and (d) “−” to indicate that the coverage
is smaller than either of the variants. There are very few domains in which the coverage

8.5. EXPERIMENTAL EVALUATION 81

d
o
m

a
in

I
n
i
t

A
l
l

M
1

M
2

D
i
v

1
k

Ŝ
1
k

S
1
0
0

K
1 1
0
0

K
1 5
0

M
a
x
I
A

A
l
l
+
I

Ŝ
1
k
+
I

M
1
+
I

N
D

1
D

N
D

1
D

N
D

N
D

N
D

N
D

N
D

N
D

D
N

D
N

D
N

D
N

D
a
g
ri

co
la

1
8

(2
0
)

1
1

3
1

1
3

1
1

1
1

1
3

1
3

1
3

2
3

3
1

3
1

3
1

3
1
◦3

a
ir

p
o
rt

0
4

(5
0
)

2
9

3
2

3
2

3
0

3
1

3
1

3
0

3
1

3
0

3
1

3
0

3
1

3
0

2
8

2
7

3
0

2
7

2
9

3
0

3
0

3
3

+
3
0

⊕
3
6

+
3
0

⊕
3
3

+
3
0
◦3

2
b

lo
ck

s0
0

(3
5
)

2
8

2
1

2
1

2
8

2
1

2
8

2
8

2
8

2
8

2
8

2
8

2
8

2
8

2
8

2
8

2
1

2
8

2
8

2
8

2
8

2
8

2
8

+
2
8

2
8

+
2
8

2
8

+
2
8

ca
ld

er
a
1
8

(2
0
)

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
0

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

d
ep

o
t0

2
(2

2
)

7
9

8
1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
1

1
0

1
1

1
2

1
2

1
1

1
1

+
1
1

+
1
1

+
1
1

+
1
1

+
1
1

+
1
1

fr
ee

ce
ll
0
0

(8
0
)

6
7

7
1

7
1

4
1

3
6

3
6

5
8

5
8

5
8

5
8

7
3

7
3

7
3

7
2

6
8

7
1

6
2

6
4

6
5

6
7

7
1

⊕
7
2

⊕
7
2

+
7
3

⊕
7
3

⊕
6
9
◦6

9
g
ed

1
4

(2
0
)

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
7

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
5

1
5

1
5

1
5

+
1
9

+
1
9

1
5

1
5

h
ik

in
g
1
4

(2
0
)

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
1

1
1

1
4

1
4

1
4

1
4

1
3

1
3

1
3

1
4

1
4

+
1
4

+
1
4

+
1
4

+
1
4

+
1
4

+
1
4

lo
g
is

ti
cs

0
0

(2
8
)

1
1

1
1

1
1

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
6

1
6

1
9

1
9

1
9

1
9

1
9

+
1
9

+
1
9

+
1
9

+
1
9

+
1
9

+
1
9

lo
g
is

ti
cs

9
8

(3
5
)

2
2

2
5

5
5

5
5

5
5

5
5

5
5

3
3

5
5

5
5

5
+
5

+
5

+
5

+
5

+
5

+
5

m
y
st

er
y
9
8

(3
0
)

1
7

1
7

1
8

1
7

1
7

1
8

1
7

1
8

1
7

1
8

1
7

1
8

1
7

1
8

1
7

1
8

1
7

1
8

1
8

1
7

1
8

1
7

1
8

1
7

1
8

1
7

1
8

n
o
m

y
st

er
y
1
1

(2
0
)

1
0

1
0

1
0

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
0

1
0

1
4

1
4

1
4

1
4

1
4

+
1
4

+
1
4

+
1
4

+
1
4

+
1
4

+
1
4

o
p

en
st

a
ck

s0
6

(3
0
)

7
1
4

1
3

7
1
4

1
4

7
7

7
7

7
7

7
7

7
7

7
1
0

1
0

7
1
4

7
−

1
3

7
◦1

3
7
◦1

3
o
p

en
st

a
ck

s0
8

(3
0
)

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
1

2
3

2
3

2
3

2
2

2
3

2
3

2
3

2
3

2
3

2
3

−
2
1

2
3

2
3

2
3

o
p

en
st

a
ck

s1
1

(2
0
)

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
6

1
8

1
8

1
8

1
7

1
8

1
8

1
8

1
8

1
8

1
8

−
1
6

1
8

1
8

1
8

o
p

en
st

a
ck

s1
4

(2
0
)

3
3

3
3

3
3

3
3

3
3

3
3

0
3

3
3

1
2

2
3

3
3

3
−

0
3

3
3

p
a
rc

p
ri

n
te

r0
8

(3
0
)

2
7

2
7

2
7

2
1

2
0

2
0

2
4

2
5

2
3

2
3

1
7

1
7

1
7

1
6

1
6

1
6

2
8

2
8

2
8

2
8

2
7
◦2

5
⊕
2
8
◦2

2
◦2

2
◦2

5
−

2
5

p
a
rc

p
ri

n
te

r1
1

(2
0
)

2
0

2
0

2
0

1
6

1
5

1
5

1
7

1
8

1
7

1
7

1
3

1
3

1
3

1
2

1
2

1
2

2
0

2
0

2
0

2
0

2
0
◦2

0
◦2

0
◦1

7
◦1

7
−

1
7

−
1
7

p
a
rk

in
g
1
1

(2
0
)

7
6

6
8

8
8

8
8

8
8

8
8

8
8

8
8

5
8

8
8

8
+
8

+
8

+
8

+
8

+
8

+
8

p
a
rk

in
g
1
4

(2
0
)

7
6

6
8

8
8

8
8

8
8

8
8

8
8

8
8

5
8

8
8

8
+
8

+
8

+
8

+
8

+
8

+
8

p
eg

so
l0

8
(3

0
)

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

3
0

3
0

3
0

2
9

2
9

2
9

2
9

2
9

2
9

2
9

2
9

p
eg

so
l1

1
(2

0
)

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

2
0

2
0

2
0

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

p
et

r-
n

et
-a

li
g
n

1
8

(2
0
)

1
3

1
3

1
3

7
9

9
7

7
7

7
1
1

1
1

1
1

1
1

9
9

9
7

1
1

1
3

1
3
◦1

2
◦1

3
−

1
1

−
1
1
◦1

3
◦1

3
p

ip
es

w
o
rl

d
-n

o
ta

n
k
0
4

(5
0
)

2
6

2
6

2
5

2
1

2
5

2
5

2
0

2
4

2
0

2
4

2
5

2
6

2
7

3
0

2
6

2
7

1
9

2
4

2
5

2
6

2
8
◦2

6
⊕
3
0

+
2
7

+
2
9
◦2

6
⊕

2
9

p
ip

es
w

o
rl

d
-t

a
n

k
0
4

(5
0
)

1
8

1
7

1
7

1
6

1
7

1
6

1
7

1
7

1
7

1
7

1
4

1
8

1
9

1
9

2
0

2
1

1
8

2
0

2
0

1
8

1
7

⊕
1
9

⊕
1
9

⊕
2
0

⊕
2
0

⊕
1
9

⊕
1
9

ro
v
er

s0
6

(4
0
)

6
6

6
7

8
8

7
8

7
8

7
8

7
8

6
6

7
8

8
7

8
+

7
+
8

+
7

+
8

+
7

+
8

sc
a
n

a
ly

ze
r0

8
(3

0
)

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
2

1
2

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

sc
a
n

a
ly

ze
r1

1
(2

0
)

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

9
1
0

1
0

9
9

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

sn
a
k
e1

8
(2

0
)

1
3

1
5

1
5

1
4

1
4

1
4

1
2

1
2

1
2

1
2

1
0

1
0

1
3

1
7

1
2

1
5

1
1

1
1

1
2

1
4

1
5

⊕
1
5

◦1
5

1
3

−
1
5

⊕
1
5
◦1

5
so

k
o
b

a
n

0
8

(3
0
)

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

2
9

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

sp
id

er
1
8

(2
0
)

1
4

1
3

1
5

1
2

1
4

1
4

1
3

1
3

1
3

1
3

1
2

1
4

1
5

1
6

1
3

1
4

1
3

1
3

1
3

1
5

1
5

⊕
1
6

◦1
5

+
1
5

−
1
5
◦1

4
◦1

5
st

o
ra

g
e0

6
(3

0
)

1
6

1
6

1
5

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

+
1
6

1
6

+
1
6

1
6

+
1
6

te
rm

es
1
8

(2
0
)

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
2

1
2

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
3

−
1
2

−
1
2

1
2

1
2

−
1
2

−
1
2

te
tr

is
1
4

(1
7
)

1
5

1
6

1
5

1
4

1
4

1
5

1
6

1
6

1
6

1
6

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

⊕
1
7

⊕
1
7

+
1
7

+
1
7

⊕
1
7

⊕
1
7

ti
d

y
b

o
t1

1
(2

0
)

1
4

1
6

1
8

1
4

1
7

1
8

1
4

1
8

1
4

1
8

1
4

1
8

1
4

1
8

1
4

1
8

1
4

1
8

1
8

1
4

1
8

1
4

1
8

1
4

1
8

1
4

1
8

ti
d

y
b

o
t1

4
(2

0
)

1
0

1
2

1
4

1
0

1
3

1
4

1
0

1
4

1
0

1
4

1
0

1
4

1
0

1
4

9
1
4

9
1
4

1
4

1
0

1
4

1
0

1
4

1
0

1
4

1
0

1
4

tp
p

0
6

(3
0
)

6
6

6
6

6
6

6
6

6
6

8
8

7
7

6
6

6
6

6
7

7
⊕
8

⊕
8

⊕
8

⊕
8

⊕
8

⊕
8

tr
u

ck
s0

6
(3

0
)

1
3

1
3

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

+
1
4

1
4

+
1
4

1
4

+
1
4

1
4

v
is

it
a
ll
1
1

(2
0
)

1
6

1
6

1
6

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
6

1
6

1
4

1
4

1
1

1
1

1
7

1
7

1
7

1
7

1
7

+
1
7

+
1
7

−
1
4

−
1
4

+
1
7

+
1
7

v
is

it
a
ll
1
4

(2
0
)

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
1

1
1

9
9

5
5

1
4

1
4

1
4

1
3

1
3

+
1
3

+
1
3

−
9

−
9

+
1
3

+
1
3

w
o
o
d

w
o
rk

in
g
0
8

(3
0
)

1
2

1
2

1
2

1
4

1
4

1
5

1
2

1
2

1
2

1
2

1
6

1
7

1
5

1
6

1
3

1
5

1
3

1
2

1
2

1
4

1
5

+
1
4

⊕
1
7

+
1
5

⊕
1
7

⊕
1
5

⊕
1
7

w
o
o
d

w
o
rk

in
g
1
1

(2
0
)

7
7

7
9

9
1
0

7
7

7
7

1
1

1
2

1
0

1
1

8
1
0

8
7

7
9

1
0

+
9

⊕
1
2

+
1
0

⊕
1
2

⊕
1
0

⊕
1
2

ze
n

o
tr

a
v
el

0
2

(2
0
)

1
0

1
0

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

+
1
1

+
1
1

⊕
1
1

⊕
1
1

+
1
1

+
1
1

Σ
(1

6
9
7
)

9
2
1

9
3
3

9
3
8

9
0
3

9
1
3

9
2
7

9
2
1

9
3
8

9
2
0

9
3
5

9
3
2

9
5
7

9
3
7

9
6
1

9
0
3

9
2
5

9
2
9

9
6
1

9
6
9

9
6
0

9
8
9

9
6
4

1
0
0
1

9
4
9

9
8
5

9
5
9

9
8
7

Σ
w

/
o

fr
ee

ce
ll
0
0

(1
6
1
7
)

8
5
4

8
6
2

8
6
7

8
6
2

8
7
7

8
9
1

8
6
3

8
8
0

8
6
2

8
7
7

8
5
9

8
8
4

8
6
4

8
8
9

8
3
5

8
5
4

8
6
7

8
9
7

9
0
4

8
9
3

9
1
8

8
9
2

9
2
9

8
7
6

9
1
2

8
9
0

9
1
8

T
ab

le
8.

1:
N

u
m

b
er

of
so

lv
ed

ta
sk

s
fo

r
d
iff

er
en

t
h
eu

ri
st

ic
s.

O
n
ly

th
e

d
om

ai
n
s

w
it

h
a

d
iff

er
en

ce
in

co
ve

ra
ge

ar
e

li
st

ed
.

82 CHAPTER 8. STRENGTHENING POTENTIAL HEURISTICS

n 5 10 50 100 250 500 750 1 000 2 000

D-Sn 896 910 923 925 897 863 828 791 741

D-K1n 951 957 969 961 947 935 925 925 899

D-K2n 953 960 967 956 944 925 917 919 912

D-L1n 934 951 965 963 932 877 850 824 765

D-L2n 937 951 962 957 928 874 844 810 744

Table 8.2: Number of solved tasks for a different number of samples n.

D-All+I D-K150 lmc ms flw comp1 comp2 ppdbs scrp

overall 1 001 969 911 895 816 1 046 1 091 1 090 1 112

w/o freecell00 929 904 896 874 762 1 019 1 059 1 056 1 040

Table 8.3: Number of solved tasks for a different heuristic search planners.

is smaller than for the variant without the added constraint or for Init (the cases with
“−”): only 2 out of 65 for D-All+I, 4 for D-Ŝ1k+I, and only 3 for D-M1+I. So, it indeed
seems that the combination of the optimization for all states and for the initial state at
the same time brings the best from both.

A similar approach to All+I is to compute two potential functions, for all states and
for the initial state, separately and take the maximum as a heuristic value (denoted by
MaxIA). The comparison between All+I and MaxIA shows that incorporating the initial
state as a constraint (All+I) provides better results overall, but in some domains MaxIA
solves more tasks than All+I. In parcprinter08, petri-net-alignment18, and termes18,
N-MaxIA solves more tasks than N-All+I, and in openstacks06 D-MaxIA solves more tasks
than D-All+I. In all other domains, All+I is at least as good as MaxIA.

To compare the results to other state-of-the-art heuristics, we also evaluated the LM-
Cut (lmc) heuristic (Helmert & Domshlak, 2009), the merge-and-shrink (ms) heuristic
with SCC-DFP merge strategy and non-greedy bi-simulation shrink strategy (Helmert
et al., 2014; Sievers et al., 2016), the flow (flw) heuristic (Bonet & van den Briel, 2014;
Bonet, 2013), and the four best-performing non-portfolio planners from IPC 2018: Com-
plementary1 (comp1) (Franco et al., 2018), and Complementary2 (comp2) (Franco et al.,
2017, 2018) planners, the Planning-PDBs planner (ppdbs) (Moraru et al., 2018; Franco
et al., 2017), and the Scorpion planner (scrp) (Seipp, 2018; Seipp & Helmert, 2018). The
overall coverage is shown in Table 8.3.

Our best variant of the potential heuristic (D-All+I) solved 90 (33 without the freecell
domain) more tasks than lmc, 106 (55) more than ms, and 185 (167) more than flw. And
the best performing variant that uses mutexes for estimating the number of reachable
states, D-K1

50, solved 58 (8), 74 (30), and 153 (142) more tasks than lmc, ms, and flw,
respectively. However, all variants of the potential heuristic were surpassed by all four
evaluated planners from IPC 2018. D-All+I solved 45 (90), 90 (130), 89 (127), and 111
(111) fewer planning tasks than comp1, comp2, ppdbs, and scrp, respectively.

8.6 Summary

We showed that utilizing mutexes can significantly improve potential heuristics. Disam-
biguations in the goal and operator preconditions increase the overall coverage whenever
they are used and they decrease the coverage only in a very small number of domains. It

8.6. SUMMARY 83

is also clear that the multi-fact disambiguation dominates the single-fact disambiguation
for virtually no cost at all.

A more accurate estimation of the number of reachable states using mutexes results
in a higher overall coverage than the optimization for all syntactic states, but mainly
due to two domains only. However, a similar technique used for an ensemble of potential
heuristics, each conditioned on a partial state, increases the number of solved tasks even
if the partial states are sampled randomly. A better structural analysis, for example with
causal graphs, could probably lead to even better selection of the partial states, but we
leave it for future research.

The additional constraint on the heuristic value for the initial state improves the
overall coverage whenever used. Its use is orthogonal to the disambiguation technique
and it turned out that such constraint in combination with disambiguations and the
optimization for all syntactic states results in the best performing variant of the potential
heuristic. This variant outperforms the LM-Cut, merge-and-shrink, and flow heuristics
solving 90, 106, and 185 more problems, respectively, on the standard benchmark set.
However, it is still surpassed by all four best-performing non-portfolio planners from the
last IPC 2018.

84 CHAPTER 8. STRENGTHENING POTENTIAL HEURISTICS

Chapter 9

Operator Mutex

In this chapter, we move from invariants describing mutual exclusion between facts to sets
of operators that are mutually exclusive in the sense that applying one operator forbids
to apply others in the shortest optimal plan. We say that a set of operators is a strong
operator mutex (op-mutex) if no strongly optimal plan contains all of them. We introduce
several methods to infer op-mutexes automatically from the description of the task, and
show that they can be found in a sizable number of domains.

We combine op-mutexes with structural symmetries in order to identify operators
that can be safely removed from the planning tasks. The notion of symmetries is not
new to classical planning (Fox & Long, 1999). They can be used to reduce the size of the
search space in heuristic search planners (Pochter et al., 2011; Domshlak et al., 2012),
obtain more compact encodings in SAT-based planners (Rintanen, 2003), compute better
heuristics (Domshlak et al., 2013; Sievers et al., 2015, 2017), transform the task (Riddle
et al., 2015), or ground the task (Röger et al., 2018).

Here, we use symmetries to prove that certain operators can be safely removed from
the planning task. We show that at least one optimal plan is preserved when removing
some operators that are all op-mutex with other symmetric operators. In order to find out
whether more operators can be removed, we then analyze which symmetries are preserved
after removing a set of operators in this way. This leads to a fixpoint computation method
that can remove a sizable number of operators in some domains.

9.1 Background

In this chapter, we use STRIPS formalism (Definition 3.1). Recall that a plan is called
optimal if its cost is minimal among all plans, and it is called strongly optimal if it is
optimal and it contains the minimum number of operators among all optimal plans. We
denote the set of all strongly optimal plans in the STRIPS planning task Π by PΠ.

Definition 9.1. A labeled transition system (LTS) is a tuple Θ = 〈S, L, T, sI , S?〉,
where S is a finite set of states, L is a finite set of labels with associated cost c(l) ∈ R+

0

to each label l ∈ L, T ⊆ S × L × S is a set of transitions, sI ∈ S is the initial state,

and S? ⊆ S is a set of goal states. We write s1
l−→ s2 to refer to a transition from s1 to

s2 with the label l. A sequence of labels 〈l1, . . . , ln〉 is a path from s0 to sn in Θ if there

exist si−1
li−→ si ∈ T for every i ∈ {1, . . . , n}. We say that s′ is reachable from s if there

is a path from s to s′.

85

86 CHAPTER 9. OPERATOR MUTEX

The state space of a planning task Π is the LTS ΘΠ where S := RΠ, sI := sI , s ∈ S?
iff sG ⊆ s, the labels L are the operators O with the given costs, and s

o−→ s′ is a transition
in T if pre(o) ⊆ s and oJsK = s′.

Definition 9.2. An abstraction α for a transition system Θ is a function mapping states
S into a set of abstract states Sα. The abstract transition system Θα is defined as
〈Sα, L, Tα, sαI , Sα? 〉, where α(s)

o−→ α(s′) ∈ Tα iff s
o−→ s′ ∈ T , sαI = α(sI), and Sα? = {α(s) |

s ∈ S?}.

Definition 9.3. A projection of the state space ΘΠ to the set of facts F ⊆ F is an
abstract transition system ΘαF

Π with the abstraction αF (s) = s ∩ F .

For notational convenience, we will sometimes abuse the notation for sequences by
referring to a sequence as a set. For a set of operators O ⊆ O, we denote Π \ O the
planning task resulting from removing operators O, Π \O = 〈F ,O \O, sI , sG〉.

9.2 Operator Mutexes and Redundancy

Our goal here is to eliminate operators from a planning task, if they can be proven
unnecessary to find a strongly optimal plan. We say that a set of operators is redundant
if removing them from the task preserves at least one strongly optimal plan.

Definition 9.4. Given the planning task Π, a set of operators O ⊆ O is redundant if
PΠ 6= ∅ implies PΠ\O ∩ PΠ 6= ∅.

The union of two redundant sets is not necessarily also a redundant set. However, we
can merge two sets of redundant operators, if one is shown to be redundant in the task
where the other has already been removed.

Proposition 9.5. Let Π denote a planning task with a set of operators O and let R1, R2 ⊆
O, R1 ∩R2 = ∅. If R1 is redundant in Π and R2 is redundant in Π \R1, then R1 ∪R2 is
redundant in Π.

Proof. PΠ 6= ∅ implies PΠ\R1 ∩ PΠ 6= ∅, because R1 is redundant in Π. And PΠ\R1 6= ∅
implies PΠ\(R1∪R2)∩PΠ\R1 6= ∅, because R1 is redundant in Π\R1. Therefore PΠ\(R1∪R2) ⊆
PΠ\R1 ⊆ PΠ and PΠ\(R1∪R2) 6= ∅.

The notion of mutually exclusive facts that cannot be together in any reachable state
has proven to be very useful to improve different types of planning algorithms. Here,
we define strong operator mutexes as sets of operators that cannot be part of the same
strongly optimal plan.

Definition 9.6. A strong operator mutex (op-mutex) O ⊆ O is a non-empty set of
operators such that O 6⊆ π for every π ∈ PΠ.

The mutual exclusion between operators with respect to strongly optimal plans means
that every op-mutex always contains at least one operator that is redundant.

Proposition 9.7. In every op-mutex O ⊆ O, there is an operator o ∈ O such that {o} is
redundant.

Proof. Given π ∈ PΠ, O 6⊆ π by Definition 9.6, thus there is an operator o ∈ O such that
o /∈ π, therefore π ∈ PΠ\{o}.

9.3. INFERENCE OF OPERATOR MUTEXES 87

From now on, we will concentrate on the special case of op-mutexes that are formed
by pairs of operators, since, as shown by Proposition 9.8, they can be used to identify
redundant sets consisting of more than one operator.

Proposition 9.8. Let Π denote a planning task, let O1, O2 ⊆ O such that O1 ∩ O2 = ∅
and {o1, o2} is an op-mutex for every o1 ∈ O1 and every o2 ∈ O2. Then O1 or O2 is
redundant.

Proof Sketch. If o 6∈ π for every o ∈ O1 and every π ∈ PΠ, then PΠ\O1 = PΠ. Otherwise
there exists o ∈ O1 s.t. o ∈ π, for some π ∈ PΠ, and since {o, o′} is an op-mutex for each
o′ ∈ O2, o′ /∈ π. Thus, O2 is redundant.

Op-mutexes are useful for obtaining candidate sets of operators that may be redun-
dant. However, op-mutexes are not sufficient to prove any such set redundant. Later, we
will show how to combine op-mutexes with symmetries to identify which set of operators
is actually redundant.

9.3 Inference of Operator Mutexes

In this section, we describe several methods for inference of op-mutexes based on well-
known planning techniques.

9.3.1 Abstractions

Abstraction heuristics map the state space of a planning task into a smaller abstract
state space and use the distance in the abstract state space as an admissible estimation.
Abstractions can also be used to infer op-mutexes.

Theorem 9.9. Let Π denote a planning task, and let o1, o2 ∈ O, o1 6= o2, denote operators
in Π. If there exists an abstract transition system Θα

Π such that for every transition

s1
o1−→ s′1 and every transition s2

o2−→ s′2, s2 is not reachable from s′1 and s1 is not reachable
from s′2, then {o1, o2} is an op-mutex.

Proof Sketch. The theorem clearly holds for ΘΠ, since o2 is never reachable from o1 and
vice versa. This means that o1 and o2 are never part of the same path, and therefore they
cannot coexist in the same plan.

In their work, Helmert et al. (2007) showed that abstractions preserve all paths in the
state space, thus if o1 and o2 are not reachable from one another in Θα

Π, then the same
holds for ΘΠ.

Theorem 9.9 shows how we can infer strong operator mutexes using any known method
for computing abstractions of planning tasks, including pattern databases (Culberson &
Schaeffer, 1996; Edelkamp, 2001), merge-and-shrink (Helmert et al., 2014; Sievers et al.,
2014), or Cartesian abstractions (Seipp & Helmert, 2018). Analyzing what abstraction
methods are best suited to find op-mutexes is left for future work. We will focus our
evaluation only on projections to individual mutex groups.

To compute op-mutexes with this method one needs to check reachability between
every pair of states in the abstract state space Θα

Π. However, this can be done more
efficiently by considering instead a smaller abstract state space Θγ

Π, where γ(s) = γ(s′) if
α(s) and α(s′) belong to the same strongly connected component in Θα

Π. In other words,

88 CHAPTER 9. OPERATOR MUTEX

given an abstract LTS in which we want to look for op-mutexes, one can always apply
a condensation of its strongly connected components. The set of inferred op-mutexes
will not be affected because if α(s) and α(s′) belong to the same strongly connected
component, then they have the same set of reachable abstract states.

9.3.2 Operators-as-Facts Compilation

Here, we propose a compilation that allows us to use methods for inferring mutexes to
infer op-mutexes. The idea is to transform the task by adding one artificial fact per
operator, so that two operators are op-mutex if their corresponding artificial facts are
mutex.

Definition 9.10. Given the planning task Π = 〈F ,O, sI , sG〉, the op-fact compilation
of Π is another planning task Πop = 〈F ∪ Fop,Oop, sI , sG〉, where Fop = {fo | o ∈ O},
and Oop = {o� | o ∈ O} where each operator o� is defined as o� = 〈pre(o), add(o) ∪
{fo}, del(o), c(o)〉.

Theorem 9.11. Let Πop denote the op-fact compilation of the planning task Π, and let
F = {fo1 , . . . , fon} ⊆ Fop. If F is a mutex in Πop, then {o1, . . . , on} is an op-mutex in Π.

Proof. Every fo ∈ Fop appears only in the add effect of the operator o� and otherwise the
operators o� and o are identical. Therefore a sequence of operators π� = 〈o�1, . . . , o�n〉 in
Πop is applicable in sI iff the sequence π = 〈o1, . . . , on〉 of the original task Π is applicable
in sI . Moreover, it holds that π�JsIK = πJsIK∪ {fo | o� ∈ π�}. Assume, for contradiction,
that F = {fo1 , . . . , fon} is a mutex in Πop and there is a path π in the task Π s.t.
{o1, . . . , on} ⊆ π. This immediately leads to a contradiction, because F ⊆ π�JsIK.

The op-fact compilation allows us to infer op-mutexes by using known methods for
inference of mutexes, including the well known hm family of heuristics (Haslum & Geffner,
2000). However, we should stress that not every inference method is suitable for this type
of compilation. For example, the inference of fact-alternating mutex groups (Section 5.1)
by any inference method would fail to produce any mutex group (and thus any mutex)
containing any fact from Fop, because they appear only in add effects.

9.3.3 Critical-Path Heuristics

The alternative characterization of the hm family of heuristics introduced by Haslum
(2009) can also be adapted to compute op-mutexes directly, without considering artificial
facts for every operator. Definition 9.12 differs from the definition provided by Haslum
only in that the goal specification is empty, because we are only interested in computing
the set of operators reachable from the initial state.

Definition 9.12. Let Π = 〈F ,O, sI , sG〉 denote a planning task. The planning task
Πm = 〈Fm,Om, Im, ∅〉 consists of a set of facts Fm = {φc | c ⊆ F , |c| ≤ m}, a set
of operators Om, an initial state Im = {φc | c ⊆ sI , |c| ≤ m}, and an empty goal
specification. For each operator o ∈ O and for each subset of facts F ⊆ F such that
|F | < m and F is disjoint with add(o) and del(o), the planning task Πm contains an
operator ωo,F ∈ Om with: pre(ωo,F) = {φc | c ⊆ (pre(o) ∪ F), |c| ≤ m}, add(ωo,F) = {φc |
c ⊆ (add(o) ∪ F), c ∩ add(o) 6= ∅, |c| ≤ m}, del(ωo,F) = ∅.

9.3. INFERENCE OF OPERATOR MUTEXES 89

To compute op-mutexes, we consider the compiled planning task for every operator
o, that approximates which operators are reachable from the result of applying o in any
reachable state.

Definition 9.13. Given the planning task Π = 〈F ,O, sI , sG〉, a set of mutexes M⊆ 2F

for Π, an operator o ∈ O, and a natural number m ≥ 1, the m-M-compilation of
Π for o is another planning task Πm

M,o = 〈Fm,Om, ImM,o, ∅〉, where Fm and Om are the
same as in Πm, and ImM,o = {φc | c ⊆ (oJpre(o)K ∪ EM,o), |c| ≤ m, c 6∈ M}, where
EM,o = {f | f ∈ (F \ del(o)), ({f} ∪ pre(o)) 6∈ M?, ({f} ∪ oJpre(o)K) 6∈ M?} and
M? = {M ∪N |M ∈M, N ⊆ F}.

The m-M-compilation for an operator o differs from Definition 9.12 only in the con-
struction of the initial state. The initial state is constructed as an over-approximation of
the union of all possible states resulting from the application of the operator o on some
reachable state while taking into account given mutexes M. So, for an empty M, the
initial state ImM,o will contain all facts except those from the delete effect of o, because
they can never be part of the state resulting from the application of o. But if we are given
additional information in the form of mutexes, we can apply it to exclude from ImM,o the
facts that cannot be part of any state resulting from the application of o.

Theorem 9.14. Let Π denote a planning task, M ⊆ 2F a set of mutexes for Π, and
o1, o2 ∈ O, o1 6= o2, two reachable operators with corresponding m-M-compilations Πm

M,o1

and Πm
M,o2

. If ωo2,∅ is not reachable in Πm
M,o1

and ωo1,∅ is not reachable in Πm
M,o2

, then
{o1, o2} is an op-mutex.

Proof Sketch. Haslum (2009) showed that if ωo,∅ is not reachable in Πm, then o is not
reachable in Π. So we need to show that for every reachable state s ∈ RΠ such that
o1 is applicable in s it holds that {φc | c ⊆ o1JsK, |c| ≤ m} ⊆ ImM,o1

, because Πm
M,o1

is a
delete-free problem and if o2 is not reachable from the superset of all possible reachable
states resulting from the application of the operator o1, then o2 cannot be reachable after
any application of o1 in Π (and the same for the reachability of o1 from o2). The rest
follows directly from Theorem 9.9 with the identity abstraction α(s) = s.

Let s ∈ RΠ denote a reachable state such that pre(o1) ⊆ s, and let S = {c | c ⊆
o1JsK, |c| ≤ m}. Since s is reachable, o1JsK is reachable, therefore S ∩M = ∅. Now it is
enough to show that o1JsK ⊆ (o1Jpre(o1)K∪EM,o1). Since o1JsK∩del(o1) = ∅ by definition
and both s and o1JsK are reachable, it follows that for every f ∈ (o1JsK \ o1Jpre(o1)K) it
holds that f ∪ pre(o1) 6∈ M? and f ∪ o1Jpre(o1)K 6∈ M?.

9.3.4 Operators with Irreversible Add Effect

The last method is based on the observation that some domains contain facts that once
added to a state, they cannot be subsequently deleted by any operator—they are in
this sense irreversible. Any fact that does not appear in any delete effect is irreversible
and operators that add the same irreversible facts (and nothing else) form pairwise an
op-mutex.

Theorem 9.15. Let O ∈ O be a set of operators with the same add effects, denoted
add(O). If for all o ∈ O, it holds that add(O) ∩ del(o) = ∅, then for every o1, o2 ∈ O,
o1 6= o2, it holds that {o1, o2} is an op-mutex.

90 CHAPTER 9. OPERATOR MUTEX

Proof Sketch. (By contradiction) Let o1, o2 ∈ O, o1 6= o2, and let π ∈ PΠ s.t. o1, o2 ∈ π.
Assume WLOG, that o1 occurs before o2 in π. There is a state s in the plan π where o2

is applied. Note that since no operator deletes any fact f ∈ add(o1) = add(o2) and o1 has
already occurred, then add(o2) ⊆ s. This means that o2JsK ⊆ s, in contradiction to the
strong optimality of the plan.

The previous op-mutex inference methods produce op-mutexes that are not part of
any plan. Theorem 9.15 can, however, provide op-mutexes that can be a part of some
plan (or even an optimal plan), but cannot be part of any strongly optimal plan.

9.4 Symmetries

We adopt the definition of symmetry by Shleyfman et al. (2015) with additional stabilizer
for the initial state as was proposed by Pochter et al. (2011).

Definition 9.16. A plan preserving symmetry (or symmetry for short) of the tran-
sition system Θ = 〈S, L, T, sI , S?〉 is a permutation σ of S ∪ L mapping states to states
and labels to labels such that

• s o−→ s′ ∈ T iff σ(s)
σ(o)−−→ σ(s′) ∈ T ,

• c(o) = c(σ(o)),

• s ∈ S? iff σ(s) ∈ S?, and

• σ(sI) = sI

for all states s, s′ ∈ S and all labels o ∈ L. For notational convenience, we extend per-
mutations σ to sequences σ(〈x1, . . . , xn〉) = 〈σ(x1), . . . , σ(xn)〉 and sets σ({x1, . . . , xn}) =
{σ(x1), . . . , σ(xn)}.

Symmetries are closed under composition and inverse, and therefore form the auto-
morphism group Aut(Θ) of the transition system.

The reason for stabilizing both the initial state and goals (i.e., mapping goals to goals
and the initial state to itself) is that under this type of symmetry, symmetries preserve
plans in the sense that for any plan, every symmetric sequence of actions is also a plan
of the same length and cost.

Theorem 9.17. Let Π denote a planning task and let σ be a symmetry for ΘΠ. For every
plan π it holds that σ(π) is also a plan, moreover |π| = |σ(π)| and c(π) = c(σ(π)).

Theorem 9.17 is adopted to our notation and definition of symmetry from the work of
Shleyfman et al. (2015, Theorem 1). As a direct corollary of this theorem we have that
σ(PΠ) = PΠ. This means that op-mutexes are invariant under symmetry.

Proposition 9.18. Let Π denote a planning task, and let σ be a symmetry for ΘΠ. If O
is an op-mutex so is σ(O).

Proof. (By contradiction) Suppose that σ(O) is not an op-mutex, than there exist π ∈ PΠ

s.t. σ(O) ∈ π. By the previous Theorem 9.17 we have that σ−1(π) ∈ PΠ. Therefore,
O = σ−1(σ(O)) ∈ σ−1(π), contradicting the fact that O is an op-mutex.

9.5. DESTROYING AND PRESERVING SYMMETRIES 91

Proposition 9.18 shows that we can use symmetries to generate more op-mutexes.
However, this makes sense only if the input set of op-mutexes was obtained by some
method that does not already explore the symmetric op-mutexes. As the work of Röger
et al. (2018) suggests, Proposition 9.18 would not be useful for hm heuristics with op-
fact compilation, or our methods based on critical-path heuristics (Theorem 9.14). The
same happens for op-mutexes obtained from searching over all (symmetric) operators with
irreversible add effects (Theorem 9.15), for which further inference of op-mutexes using
symmetries is not possible.

Abstractions, on the other hand, focus on a subset of the facts of the problem and the
results can be extrapolated to other symmetric projections of the problem, e.g., if several
mutex groups are symmetric, it may suffice to compute the set of op-mutexes for one of
them and then extend the set of op-mutexes with symmetries.

In Proposition 9.8, we have shown how to find candidates for redundant sets of oper-
ators using op-mutex pairs. Symmetries allow us to identify which sets of operators are
actually redundant.

Theorem 9.19. Let Π denote a planning task, O1, O2 ⊆ O s.t. O1∩O2 = ∅, and {o1, o2}
is an op-mutex for every o1 ∈ O1 and every o2 ∈ O2. If for every o2 ∈ O2 there exists
σ ∈ Aut(ΘΠ) s.t. σ(o2) ∈ O1, then O2 is redundant.

Proof. This follows directly from the fact that if there is o ∈ O2 and π ∈ PΠ s.t. o ∈ π,
then σ(o) ∈ σ(π) ∈ PΠ. Hence, since σ(o) ∈ O1, O2 is redundant by Proposition 9.8.

In its simplest form, if two operators form an op-mutex and there exists a symmetry
between these two operators, then one of them can be safely removed. Note that Theo-
rem 9.19 is not restricted to a single symmetry. So, if we find a single operator o and a set
of operators that are all symmetric to o and op-mutex with o, then we can safely remove
such a set of operators. We can also choose to apply Theorem 9.19 to a single symmetry.
If we find a symmetry σ and a set of operators O such that σ(O)∩O = ∅ and op-mutexes
form a complete bipartite graph between O and σ(O), then we can safely remove either
O or σ(O).

9.5 Destroying and Preserving Symmetries

In this section, we describe the effect of removing operators on destroying and preserving
symmetries. We say that a symmetry is destroyed by removing a certain set of operators
if this symmetry is not valid for the reduced planning task. Conversely, a preserved
symmetry is the one that still holds in the reduced planning task.

Definition 9.20. Given an LTS Θ = 〈S, L, T, sI , S?〉 and a set of labels K ⊆ L, Θ \K =

〈S, L \ K,TK , sI , S?〉 denotes Θ reduced by K, where s
l−→ t ∈ TK iff s

l−→ t ∈ T and
l 6∈ K.

Suppose that there is a label l1 ∈ L \ K and a transition s
l1−→ t ∈ T , and for some

symmetry σ it holds that σ(l1) ∈ K. Then σ is not a symmetry for Θ\K, since then there

must exist s′
σ(l1)−−→ t′ = σ(s

l1−→ t), but Θ \K does not contain any such a transition. This
is exactly the case for any redundant set obtained according to Theorem 9.19, because
for any such redundant set K there is a symmetry that maps K to L \ K. Therefore
removing K always destroys at least one symmetry.

92 CHAPTER 9. OPERATOR MUTEX

a1 b1

a2 b2a3 b3

σ1σ2

(a)

a1 b1

a2 a3 b3 b2

σ1σ2

(b)

Figure 9.1: (a) Emergence of a new symmetry; (b) Preserving a symmetry by merging
two redundant sets.

We can, however, preserve a symmetry if we find a redundant set consisting of opera-
tors covering both sides of the symmetry mapping.

Definition 9.21. Given an LTS Θ and a set of labels K ⊆ L, we say that σ ∈ Aut(Θ) is
preserved for K if σ(K) = K.

Let us show that the term is well defined.

Theorem 9.22. Let σ ∈ Aut(Θ) be preserved for K, as described above. Then σ is also
a symmetry for Θ \K.

Proof. Note that the transition system Θ\K differs from Θ only on the sets of transitions
TK and labels L \ K. Thus, it suffices to show that σ preserves the structure on these
sets. Since σ is a permutation of S ∪ L, and by definition it holds that σ(S) = S, then
σ(L) = L. Thus, σ(L\K) = σ(L)\σ(K) = L\K. This, in turn, implies that σ preserves
the transitions in TK , by definition of the reduced LTS.

Removal of a redundant set of operators can also result in emergence of new symmetries
that were not in the original task. This is illustrated in Figure 9.1a: σ2 is not a symmetry
in the LTS, but after removing operators bi (which are redundant because all {ai, bi} are
symmetric and pairwise op-mutex), σ2 becomes a symmetry for the resulting reduced
LTS.

Figure 9.1b shows that a symmetry destroyed by removing redundant operators can
be salvaged after subsequently removing another set of redundant operators. If we use
symmetry σ1 to remove b3 (because {a3, b3} is an op-mutex), σ1 is destroyed. If we use
afterwards the symmetry σ2 to remove a3 ({a2, a3} is an op-mutex), then σ1 becomes,
again, a symmetry for the reduced planning task.

These observations motivate us to infer redundant operators using a fixpoint compu-
tation.

9.6 Inference of Redundant Operators

The algorithm for the inference of a redundant set of operators should aim at finding
the largest set possible, because, ultimately, we want to use the redundant set for the
simplification of the planning task. Redundant sets cannot be automatically merged, but
as proven in Proposition 9.5, a fixpoint computation is possible.

Theorem 9.19 provides a way to identify redundant sets of operators, but we also al-
ready explained that the removal of such operators always destroys at least one symmetry
that could be helpful for further inference steps. We propose an algorithm that is based

9.6. INFERENCE OF REDUNDANT OPERATORS 93

Algorithm 9.1: Fixpoint computation of a redundant set.

Input: Set of symmetries Σ, set of operators O, set of op-mutex pairs M
Output: Redundant set of operators R

1 R← ∅;
2 do
3 Σ+ ← {σ ∈ Σ | σ(R) = R};
4 R ← {RedundantSet(σ, R)| σ ∈ Σ+};
5 R′ ← SelectRedundantSet (R);
6 R← R ∪R′;
7 while |R′| > 0;
8 function RedundantSet(σ, R)
9 S ← ∅;

10 C ← {o | o ∈ O \R, o 6= σ(o), {o, σ(o)} ∈ M};
11 while |C| > 0 do
12 o′ ← SelectCandidate(C, R ∪ S);
13 S ← S ∪ {o′};
14 C ← {o | o ∈ C \ {o′}, {o, σ(o′)} ∈ M};
15 return S;

on the assumption that as many symmetries as possible should be preserved in each step
in order to increase the chance of finding more redundant operators in the following steps.
Moreover, in a fixpoint computation, it can happen that a symmetry that is destroyed in
one step can re-emerge again in one of the next steps (Theorem 9.22), so after removing
a set of redundant operators we check which symmetries of the original planning task are
preserved under the current set of redundant operators.

Since Theorem 9.19 requires to find a complete bipartite subgraph of op-mutexes and
determining the maximal one is already NP-Hard (Garey & Johnson, 1979), we propose a
greedy algorithm that gradually increases the size of the resulting redundant set in each
step.

The pseudo-code in Algorithm 9.1 contains two selection steps that can use any rule
and the algorithm will still remain sound. SelectRedundantSet on line 5 selects one
of the redundant sets found on the previous line. In our implementation, we select the
largest of those sets that preserves the most symmetries. SelectCandidate on line 12
selects one operator from the set of candidates C. We select the operator o′ ∈ C for which
the set R ∪ S ∪ {o′} preserves the most symmetries.

Proposition 9.23. Algorithm 9.1 always returns a redundant set of operators.

Proof Sketch. The main cycle (lines 2–7) computes a union of sets found by RedundantSet

function in consecutively reduced planning tasks. Therefore what remains to show is that
these sets are redundant (Proposition 9.5). To prove that RedundantSet always returns
a redundant set, it is enough to show that in every cycle (a) {o, σ(o)} is op-mutex for
every o ∈ C; (b) {o, o′} is op-mutex for every o ∈ S and every o′ ∈ C; (c) S ∪ {o′} is
redundant for any o′ ∈ C. (a) follows from line 10. (b) follows from line 14 and the
symmetry of op-mutexes (Proposition 9.18). (c) follows from (a), (b), and Theorem 9.19
with sets O1 := σ(S) and O2 := S and a single symmetry σ.

94 CHAPTER 9. OPERATOR MUTEX

domain op-mutex pairs in 5 min. avg. time [s]
fam Π2

op 2-h2 iadd fam Π2
op 2-h2

agricola18 (20) (15) 59 862.8 (18) 425 278.3 (0) 0.0 0.0 29.1 86.0 0.0
barman11 (20) 19.8 19.8 19.8 0.0 0.2 0.0 0.7
barman14 (14) 20.2 20.2 20.2 0.0 0.2 0.0 1.0
caldera18 (20) 0.0 235.6 397.1 0.0 41.7 0.3 31.2
cavediving14 (20) 938.4 8 331.7 (16) 1 068.1 140.8 7.8 9.1 49.8
childsnack14 (20) 14 562.0 14 562.0 14 562.0 213.7 0.4 0.8 37.5
floortile11 (20) 2.0 3.1 3.1 1.1 0.4 0.0 0.9
floortile14 (20) 0.9 1.5 1.5 0.4 0.2 0.0 0.2
hiking14 (20) 0.1 0.1 0.1 0.0 0.1 0.4 13.7
nomystery11 (20) 20 741.0 20 916.5 (19) 47 163.1 0.0 9.4 3.2 56.8
nurikabe18 (14) 14 747.2 19 313.1 (11) 4 584.5 0.0 18.7 4.6 16.1
openstacks06 (30) 3 957.6 (27) 1 530.5 (23) 457.0 0.0 11.9 6.7 24.9
openstacks08 (30) 340.3 340.3 340.3 0.0 0.5 0.1 5.5
openstacks11 (20) 178.9 178.9 178.9 0.0 0.4 0.1 3.5
openstacks14 (20) 1 078.0 1 078.0 1 078.0 0.0 3.0 0.8 62.3
organic-synthesis18 (18) (10) 0.3 (14) 27.0 (13) 209.6 0.0 4.0 0.0 5.9
parcprinter08 (30) 3.2 3.2 3.2 0.0 0.9 0.0 0.1
parcprinter11 (20) 2.2 2.2 2.2 0.0 0.7 0.0 0.1
pathways06 (30) 1 184.7 1 184.7 1 184.7 1.1 1.0 0.3 16.3
pegsol08 (30) 1.7 1.7 2.3 0.0 0.2 0.0 0.1
pegsol11 (20) 0.5 0.5 0.8 0.0 0.3 0.0 0.1
petri-net-alignment18 (20) (0) 0.0 276.7 276.7 0.0 0.0 1.6 133.1
pipesworld06 (50) (33) 21.3 (41) 23.4 (19) 18.4 0.0 59.8 35.3 54.2
rovers06 (40) 1 260.4 1 260.4 (27) 90.5 3 928.4 6.4 10.5 41.2
snake18 (20) (13) 254.6 1 096.2 (0) 0.0 0.0 129.6 36.1 0.0
sokoban08 (30) 59.2 60.7 61.5 0.0 1.7 0.1 7.8
sokoban11 (20) 30.9 31.5 32.0 0.0 2.4 0.1 5.9
spider18 (20) (12) 12 660.1 (19) 75 457.6 (3) 187.8 0.0 66.3 73.2 126.5
tidybot11 (20) 1 234.9 2 205.5 (9) 12.2 0.0 5.4 19.9 30.3
tidybot14 (20) 2 428.7 4 267.9 (0) 0.0 0.0 10.7 38.2 0.0
tpp06 (30) (27) 1 901.1 3 782.2 (20) 180.1 0.0 31.0 4.3 21.8
trucks06 (30) 1 684.4 1 693.3 2 127.2 1 498.9 0.6 0.4 28.6
woodworking08 (30) 48.9 49.7 49.8 0.0 0.5 0.0 1.2
woodworking11 (20) 29.3 30.0 30.1 0.0 0.5 0.0 1.0
overall (806) (738) 139 255.6 (787) 583 264.2 (644) 74 342.9 5 784.5 11.5 9.4 21.0

Table 9.1: Left: Number of inferred op-mutex pairs (in thousands) within a time limit of
5 minutes. If the method did not terminate in time, the number of successfully processed
tasks is shown in parentheses. Maximums are highlighted, and overall is a sum. Right:
Average time per instance in seconds with cut-off at 5 minutes. Minimums are highlighted,
and overall is average over all instances.

9.7 Experimental Evaluation

The proposed methods were implemented1 in C. Symmetries are computed using the
BLISS library (Junttila & Kaski, 2007) on the Problem Description Graph (PDG) of the
task (Pochter et al., 2011; Shleyfman et al., 2015). We used all IPC benchmarks 2006–
2018 from the optimal track. Since our methods are described for STRIPS planning tasks
without conditional effects, we compile them away (Nebel, 2000). We exclude all instances
where the compilation of conditional effects or grounding of the task exceeded the time
or memory limits. The experiments were performed on a cluster with Intel E5-2670 2.6
GHz processor with 8 GB memory limit for each task. We evaluated four methods for
inference of op-mutexes:

• fam refers to the method based on abstractions (Theorem 9.9) used on projections
to individual maximal fact-alternating mutex groups (fam-groups) (we used Algo-
rithm 5.1 for the inference of fam-groups);

• Π2
op refers to h2 reachability analysis of the op-fact compilation (Theorem 9.11);

• 2-h2 refers to running reachability on the 2-M compilation (Definition 9.13) with
mutexes M obtained from the h2 reachability with all operators (Theorem 9.14);
and

1https://gitlab.com/danfis/cplan.git, branch aaai19

9.7. EXPERIMENTAL EVALUATION 95

domain op-mutex pairs finished in 30 min.
fam Π2

op 2-h2 iadd
agricola18 (4) 3 478.2 21 065.9 32 855.5 0.0
barman11 (20) 19.8 19.8 19.8 0.0
barman14 (14) 20.2 20.2 20.2 0.0
caldera18 (20) 0.0 235.6 397.1 0.0
cavediving14 (16) 214.6 847.9 1 068.1 18.3
childsnack14 (20) 14 562.0 14 562.0 14 562.0 213.7
floortile11 (20) 2.0 3.1 3.1 1.1
floortile14 (20) 0.9 1.5 1.5 0.4
hiking14 (20) 0.1 0.1 0.1 0.0
nomystery11 (20) 20 741.0 20 916.5 57 411.9 0.0
nurikabe18 (14) 14 747.2 19 313.1 32 476.7 0.0
openstacks06 (25) 448.8 704.7 958.8 0.0
openstacks08 (30) 340.3 340.3 340.3 0.0
openstacks11 (20) 178.9 178.9 178.9 0.0
openstacks14 (20) 1 078.0 1 078.0 1 078.0 0.0
organic-synthesis18 (11) 0.3 3.6 108.1 0.0
parcprinter08 (30) 3.2 3.2 3.2 0.0
parcprinter11 (20) 2.2 2.2 2.2 0.0
pathways06 (30) 1 184.7 1 184.7 1 184.7 1.1
pegsol08 (30) 1.7 1.7 2.3 0.0
pegsol11 (20) 0.5 0.5 0.8 0.0
petri-net-alignment18 (0) 0.0 0.0 0.0 0.0
pipesworld06 (26) 20.7 20.8 20.8 0.0
rovers06 (31) 185.9 185.9 185.9 477.5
snake18 (10) 198.9 245.0 255.6 0.0
sokoban08 (30) 59.2 60.7 61.5 0.0
sokoban11 (20) 30.9 31.5 32.0 0.0
spider18 (6) 567.4 601.9 636.0 0.0
tidybot11 (12) 0.0 0.0 35.0 0.0
tidybot14 (8) 82.7 144.3 244.9 0.0
tpp06 (25) 1 056.1 1 056.1 1 117.4 0.0
trucks06 (30) 1 684.4 1 693.3 2 127.2 1 498.9
woodworking08 (30) 48.9 49.7 49.8 0.0
woodworking11 (20) 29.3 30.0 30.1 0.0
overall (672) 60 988.9 84 602.7 147 469.5 2 211.0

Table 9.2: Number of inferred op-mutex pairs (in thousands) in commonly solved tasks
within a time limit of 30 minutes.

• iadd refers to looking for operators with a single irreversible add effect (Theo-
rem 9.15).

Table 9.1 summarizes the results on the number of inferred op-mutex pairs (in thou-
sands). We list only the domains in which at least one op-mutex pair was found. The
results show that it is possible to infer a significant number of op-mutex pairs in many
different domains (34 out of 83) even with a time limit of 5 minutes which is suitable for
a preprocessing step. The average time of iadd is omitted because in all cases it was a
fraction of a second. The most successful method was Π2

op mainly because it offers a good
trade-off between op-mutex pairs found and computational effort. The reason why fam

was slower than Π2
op on average is that in some cases the inference of fam-groups is slow,

i.e., the inference of fam-groups is much slower then the inference of op-mutexes given
the fam-groups. As expected, the slowest of all methods was 2-h2, because it requires to
compute h2 reachability for every operator.

In Table 9.2, we compare the strength of inference methods. It shows the number of
op-mutex pairs found in instances where all methods successfully terminated within 30
minutes. In every case, the set of op-mutexes found by fam was a subset of those found by
Π2

op, and Π2
op found a subset of 2-h2. Theoretical analysis of the dominance between these

methods is left for future work. The results suggest that 2-h2 can provide significantly
better results than Π2

op, but practical applicability requires a significant speed-up of the
inference process (cf. Table 9.1). Promising lines of research, left for future work, seems to
be the utilization of structural symmetries of h2 previously studied by Röger et al. (2018),
and some sort of clever selection of operators for which to construct m-M-compilations.

The implementation of Algorithm 9.1 was experimentally evaluated as a standalone

96 CHAPTER 9. OPERATOR MUTEX

domain
h2+de combined with

h2+de fam Π2
op 2-h2 fam Π2

op 2-h2

barman11 (20) 52.11 4.71 24.48 20.65 +3.60 +3.60 +3.60
barman14 (14) 53.43 4.94 25.28 21.25 +4.01 +4.01 +4.01
caldera18 (19) 39.34 0.73 13.25 12.64 0.00 +1.45 +0.72
cavediving14 (5) 0.66 1.15 1.44 0.55 +1.15 +1.15 +0.55
childsnack14 (20) 0.00 39.58 39.58 39.58 +39.58 +39.58 +39.62
hiking14 (11) 0.00 0.07 0.07 0.07 +0.07 +0.07 +0.07
parcprinter08 (24) 70.68 28.61 28.61 28.61 0.00 0.00 0.00
parcprinter11 (17) 70.15 25.75 25.75 25.75 0.00 0.00 0.00
pathways06 (30) 3.94 2.22 2.26 2.26 +3.73 +3.73 +3.73
pegsol08 (9) 13.57 0.00 1.92 1.92 +0.36 +0.36 +0.36
pegsol11 (8) 9.53 1.08 3.51 3.45 +0.20 +0.20 +0.20
pipesworld06 (17) 11.46 0.04 4.04 4.04 +0.04 +0.04 +0.04
scanalyzer08 (11) 3.19 0.00 2.10 2.10 0.00 0.00 0.00
scanalyzer11 (8) 3.17 0.00 2.12 2.12 0.00 0.00 0.00
sokoban08 (6) 0.24 1.54 1.71 1.65 +1.54 +1.60 +1.60
sokoban11 (4) 0.35 1.86 2.12 2.04 +1.86 +1.95 +1.95
tpp06 (15) 37.96 1.49 19.97 18.97 +1.79 +1.79 +1.49
trucks06 (12) 75.02 0.00 0.71 0.71 +7.87 +7.87 +7.87
woodworking08 (24) 53.47 2.83 10.79 10.79 +1.60 +1.60 +1.60
woodworking11 (18) 53.72 2.73 10.17 10.17 +1.83 +1.83 +1.83
overall (292) 53.72 7.99 13.73 13.17 +4.29 +4.39 +4.32

Table 9.3: Average percentage of removed operators in each domain. The number in
the parenthesis after the domain name is the number of instances in which all methods
successfully terminated before the 15 minutes time limit and at least one operator was
pruned by at least one method; the left part shows the average percentage of removed
operators in those instances; and the right part shows the increase when h2+de is com-
bined with the methods using op-mutexes. The last row (overall) shows averages over all
instances. Maximums are highlighted in bold.

preprocessing step and in combination with the pruning using forward/backward h2

(Alcázar & Torralba, 2015) and the detection of dead-end operators using fam-groups
(Algorithm 6.1) (we will refer to the combination of the two as h2+de). Table 9.3 shows
the average percentage of removed operators within each domain and over all evaluated
instances. Only the instances in which all methods successfully finished within the 15
minutes time limit are listed. In all domains except cavediving, childsnack, hiking, and
sokoban, h2+de prunes more operators than any of our methods, but combining h2+de

with our methods further increases the number of removed operators as shown in the right
part of the table.

Table 9.4 encapsulates the results from combining h2+de with our pruning methods
in absolute numbers. We set the baseline (the column base) as the number of operators
after the grounding and h2+de pruning. The remaining columns contain the number of
additionally removed operators after a subsequent application of Algorithm 9.1 using the
op-mutexes found by our methods and h2+de pruning until a fixpoint is reached. We do
not combine fam, Π2

op, and 2-h2 methods because of the observed dominance between
them. We also exclude iadd, because by itself it managed to prune only a third of
the operators of that of the remaining three methods, and if combined with any of the
remaining three, the results were, surprisingly, worse, probably because of the greedy
selection steps in Algorithm 9.1. The results show that op-mutexes can be combined with
symmetries to simplify planning tasks in several domains. In some domains, the reduction
in the number of operators is quite significant, especially in childsnack, agricola, trucks,
and barman. Finding op-mutexes with Π2

op achieves the best results in most cases.

We also tried the most promising Π2
op pruning technique with the Fast Downward plan-

ner (Helmert, 2006). We used A? with the LM-Cut (lmc) heuristic (Helmert & Domshlak,
2009), the merge-and-shrink (ms) heuristic with SCC-DFP merge strategy and non-greedy

9.8. SUMMARY 97

domain base fam Π2
op 2-h2

agricola18 (17) 251 306 (15) =5 108 (12) =3 242 (0) 0
barman11 (20) 7 408 =554 =554 =554
barman14 (14) 6 010 =522 =522 =522
caldera18 (20) 24 178 0 =492 =220
cavediving14 (20) 91 832 =74 =74 (16) =37
childsnack14 (20) 53 698 =21 660 =21 660 =21 624
hiking14 (20) 35 822 =11 =11 =11
organic-synthesis18 (13) 47 614 (12) =27 =432 (12) =1 095
pathways06 (30) 40 595 =731 =731 =731
pegsol08 (30) 4 392 =6 =6 =6
pegsol11 (20) 3 320 =3 =3 =3
pipesworld06 (42) 1 122 448 (37) =69 =121 (22) =27
sokoban08 (30) 12 637 =73 =74 =74
sokoban11 (20) 7 139 =45 =46 =46
tpp06 (30) 107 409 (25) =1 147 =2 167 (22) =429
trucks06 (21) 22 769 =4 673 =4 673 =4 679
woodworking08 (30) 12 535 =400 =400 =400
woodworking11 (20) 8 159 =307 =307 =307
Σ (417) 1 859 271 (404) =35 410 (412) =35 515 (367) =30 765

Table 9.4: Number of operators pruned over the baseline h2+de within a time limit of 15
minutes. The number in parenthesis after the domain name is the number of instances in
which at least one method successfully finished within the time limit. For methods that
finished in less instances, their number of successfully finished instances is indicated in
parenthesis.

bi-simulation shrink strategy (Helmert et al., 2014; Sievers et al., 2016), and the potential
(pot) heuristic optimized for all syntactic states (Seipp et al., 2015). The time limit was
set to 30 minutes for the whole planning process.

When we set the Π2
op pruning phase to abstain from the inference of op-mutexes

if no symmetries were found, the planners solved all planning tasks that were solved
without Π2

op except of one task in organic-synthesis for all three heuristics, and one task
in scanalyzer for lmc. In these cases, the inference of op-mutexes took too long (organic-
synthesis) or exceeded the memory limit (scanalyzer). However, despite the size of many
instances is reduced by the pruning, this was not substantially reflected on the coverage.
Only in the agricola domain, pot with Π2

op was able to solve two more tasks, and m&s one
more task. The reductions had also a negligible effect on the number of expanded states
in most instances. In childsnack, which is the domain where more operators are pruned
by our method, we measured about twice as many expanded states per second by lmc

with Π2
op. However, no planner solved any instance in this domain.

9.8 Summary

We introduced a new notion of strong operator mutexes (op-mutexes) as sets of operators
that cannot be part of the same strongly optimal plan and proposed four different meth-
ods for inference of op-mutexes. We proved that every op-mutex contains at least one
operator that can be safely removed from the planning task and we have experimentally
evaluated that they can be found in a sizable amount of planning domains. Combining
op-mutexes with structural symmetries provides further information about which opera-
tors can actually be removed, and we showed that there are some domains where removing
operators yields a significant reduction in the size of the planning tasks. Even though our
experiments show that this reduction does not translate into significant gains for heuristic
search planners, this opens new avenues of research on how to leverage operator mutexes
to simplify planning tasks.

98 CHAPTER 9. OPERATOR MUTEX

Chapter 10

Conclusion

This thesis aims at theoretical analysis and a study of practical applicability of mutual
exclusion state invariants in the context of classical planning. We analyzed state invariants
called mutexes (describing facts that cannot co-occur in the same reachable state) and
mutex groups (describing facts out of which at most one can be part of any reachable
state). We showed that the relation between mutex pairs (mutexes consisting of exactly
two facts) and mutex groups can be described in terms of cliques in graphs and we
described a conceptually simple procedure that can be used to infer mutex groups given a
set of mutex pairs. To describe the inference of mutex groups in terms of computational
complexity, we proved that the inference of the maximum sized mutex groups is as hard
as deciding the existence of a plan, i.e., it is PSPACE-Complete. This also means that the
inference of a complete set of mutex pairs is also PSPACE-Complete.

Observing the hardness of the inference of mutex groups motivated the search for a
provably “easier” subclass of mutex groups. We introduced the notion of fact-alternating
mutex groups (fam-groups) that are defined over the input planning task rather than
over the reachable states. We proved that every fam-group is a mutex group such that
an operator can switch one fact for another from the same fam-group, or it can delete
the fact, but once we reach a state s that does not contain any fact from the fam-group,
all other states reachable from s cannot contain any fact from that fam-group. In this
sense, facts from a fam-group alternate between each other on the path from the initial
state and once facts from the fam-group disappear from the state they cannot reappear
again in any following state. We showed that this property of fam-groups can be used to
determine not only unreachable operators (as is possible with the general mutex groups),
but also operators that can reach only dead-end states (dead-end operators).

We proved that the inference of the maximum sized fam-group is NP-Complete and
we proposed and evaluated the inference algorithm based on repeated solving of integer
linear program that is complete with respect to all maximal fam-groups. The evaluation
showed that fam-groups are information-rich invariants dominating state-of-the-art infer-
ence algorithm proposed by Helmert (2009). Furthermore, we demonstrated that using
fam-groups for the construction of Finite Domain Representation (FDR) from the STRIPS
representation results in a more concise representation which in turn has a potential to
increase the number of solved tasks.

To pinpoint the complexity of fam-groups more precisely, we investigated the relation
between fam-groups and the hm heuristic (Haslum & Geffner, 2000). We proved that
every pair of facts from every fam-group is a mutex pair obtained from the h2 heuristic,
but not necessarily the other way around. This result connects the NP-Completeness of

99

100 CHAPTER 10. CONCLUSION

fam-groups and relation between mutex pairs and mutex groups in terms of graph cliques,
because h2 can be computed in a polynomial number of steps.

The ability of fam-groups to detect dead-end operators was utilized in a novel pruning
algorithm which removes operators and facts that cannot be part of any plan. We showed
that this pruning algorithm substantially reduces planning tasks from some domains which
results in more solved tasks. We also showed that fam-groups can improve the state-of-
the-art h2-based pruning technique proposed by Alcázar & Torralba (2015) that uses
reachability analysis in both progression and regression.

The experimental results showing that fam-groups dominate mutex groups inferred
by the algorithm proposed by Helmert (2009) motivated a further investigation into the
relation between Helmert’s mutex groups and fam-groups. Helmert’s algorithm works on
the lifted representation (PDDL). We formalized the inference of mutex groups in the
lifted representation and we proved that every mutex group inferred by the Helmert’s
algorithm is in fact fam-group after grounding. Moreover, we proposed an improvement
of the Helmert’s algorithm which allows to generate a richer set of lifted fam-groups.
We also applied our previous findings regarding the pruning of planning tasks using fam-
groups to the lifted level. We proposed a pruning algorithm on the lifted level that utilizes
the fact that the inferred mutex groups are lifted fam-groups. This allows us to disregard
unreachable and dead-end operators even before the ground representation is generated
from the lifted (PDDL) input. Experimental evaluation then verified that this leads to
an increased number of solved tasks on the standard benchmark set.

Mutual exclusion invariants turned out to be useful also in the context of potential
heuristics (Pommerening et al., 2015a; Seipp et al., 2015). We used the notion of disam-
biguation (Alcázar et al., 2013), originally applied in the context of regression planning,
to show how mutex groups (in the form of FDR variables) and mutexes can be combined
in order to improve heuristic estimates of potential heuristics with significant positive
impact on the number of solved tasks. Moreover, we showed that mutexes can be used
for a more accurate approximation of the number of reachable states which in turn can
be used for a construction of optimization functions for potential heuristics.

In the last part of the thesis, we extended the notion of mutual exclusion onto opera-
tors. We defined strong operator mutex (op-mutex) as a set of operators such that there is
no strongly optimal plan where operators from the op-mutex co-occur. We described four
different methods for the inference of op-mutexes based on well-known planning techniques
and we experimentally verified that op-mutexes can be found in many different domains.
Unfortunately, it turns out that op-mutexes do not tell us directly which operators can be
safely removed from the planning task. So we combined op-mutexes with structural sym-
metries (e.g., Fox & Long, 1999; Pochter et al., 2011; Shleyfman et al., 2015), previously
studied in different contexts, and we showed how to use them to find out which operators
can be removed so that at least one strongly optimal plan is preserved. In contrast to
the previous method for reducing planning tasks, this method is able to remove even the
operators that are reachable, because we make sure that if the planning task is solvable,
then at least one strongly optimal plan remains in the resulting planning task.

Appendix A

Publications

Below are listed all author’s publications. Each related publication is acompanied with
the percentage contribution of the author as agreed by all co-authors. Number of citations
is based on Web of Science (WoS), Scopus, and Google Scholar (GS). Journal articles also
contain information about the Impact Factor (IF) and 5-year Impact Factor (IF5y) by
Thomson Reuters, and the CiteScore (CS) by Scopus.

Related Publications

This section lists author’s publications related to the topic of this thesis.

Journals with impact factor:

1. Fǐser, D. & Komenda, A. (2018). Fact-alternating mutex groups for classical
planning. Journal of Artificial Intelligence Research, 61, 475–521.

80% contribution, IF 1.820, IF5y 2.448, CS 3.23, citations: 1 in WoS, 1 in Scopus,
4 in GS

Conferences A? (CORE) (indexed by WoS):

2. Fǐser, D. & Torralba, Á. & Shleyfman, A. (2019). Operator mutexes and symme-
tries for simplifying planning tasks. In Proceedings of the 33rd AAAI Conference
on Artificial Intelligence (AAAI’19), (pp. 7586–7593).

60% contribution, citations: 0 in WoS, 2 in GS

Conferences A? (CORE):

3. Fǐser, D. & Horč́ık, R. & Komenda, A. (2020). Strengthening potential heuris-
tics with mutexes and disambiguations. In Proceedings of the 30th International
Conference on Automated Planning and Scheduling (ICAPS’20), (Accepted).

60% contribution, citations: 0 in GS

4. Fǐser, D. (2020). Lifted fact-alternating mutex groups and pruned grounding of
classical planning problems. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI’20), (Accepted).

100% contribution, citations: 2 in GS

101

102 APPENDIX A. PUBLICATIONS

5. Fǐser, D. & Komenda, A. (2018). Fact-alternating mutex groups for classical plan-
ning (extended abstract). In Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI’18), (pp. 5603–5607).

80% contribution, citations: 0 in Scopus

Unrelated Publications

The following papers were published during author’s studies, but they are not covered by
this thesis.

Journals with impact factor:

6. Fǐser, D. & Faigl, J. & Kulich, M. (2013). Growing neural gas efficiently. Neuro-
computing, 104, 72–82.

IF 4.072, IF5y 3.824, CS 5.00, citations: 17 in WoS, 17 in Scopus, 29 in GS

Conferences A? (CORE) (indexed by WoS):

7. Štolba, M. & Fǐser, D. & Komenda, A. (2016). Potential heuristics for multi-
agent planning. In Proceedings of the 26th International Conference on Automated
Planning and Scheduling (ICAPS’16), (pp. 308–316).

citations: 2 in WoS, 6 in Scopus, 10 in GS

8. Štolba, M. & Fǐser, D. & Komenda, A. (2015). Admissible landmark heuristic
for multi-agent planning. In Proceedings of the 25th International Conference on
Automated Planning and Scheduling (ICAPS’15), (pp. 211–219).

citations: 2 in WoS, 11 in Scopus, 16 in GS

Conferences A? (CORE):

9. Štolba, M. & Fǐser, D. & Komenda, A. (2019). Privacy leakage of search-based
multi-agent planning algorithms. In Proceedings of the 29th International Confer-
ence on Automated Planning and Scheduling (ICAPS’19), (pp. 482–490).

citations: 2 in GS

Others (indexed in WoS):

10. Vonásek, V. & Fǐser, D. & Košnar, K. & Přeučil, L. (2014). A light-weight robot
simulator for modular robotics. In Proceedings of the 1st International Workshop
on Modeling and Simulation for Autonomous Systems (MESAS), (pp. 206–216).

citations: 3 in WoS, 4 in Scopus, 8 in GS

11. Krajńık, T. & Vonásek, V. & Fǐser, D. & Faigl, J. (2011). AR-Drone as a platform
for robotic research and education. In Proceedings of the International Conference
on Research and Education in Robotics (EUROBOT 2011), (pp. 172–186).

citations: 96 in WoS, 133 in Scopus, 314 in GS

103

Others:

12. Štolba, M. & Urbanovská, M. & Fǐser, D. & Komenda, A. (2019). A general ap-
proach to distributed and privacy-preserving heuristic computation. In Proceedings
of the Agents and Artificial Intelligence - 11th International Conference, ICAART,
Revised Selected Papers, (pp. 55–71)

citations: 0 in Scopus

13. Štolba, M. & Urbanovská, M. & Fǐser, D. & Komenda, A. (2019). Cost partitioning
for multi-agent planning. In Proceedings of the 11th International Conference on
Agents and Artificial Intelligence, (pp. 44–49)

citations: 1 in Scopus, 1 in GS

14. Fǐser, D. & Komenda, A. (2018). Concise finite-domain representations for factored
MA-PDDL planning tasks In Proceedings of the 10th International Conference on
Agents and Artificial Intelligence, (pp. 306–313)

citations: 1 in GS

15. Štolba, M. & Fǐser, D. & Komenda, A. (2015). Comparison of RPG-based FF
and DTG-based FF distributed heuristics. In Proceedings of the Distributed and
Multi-Agent Planning (DMAP-15), (pp. 77–82).

citations: 5 in GS

16. Fǐser, D. & Štolba, M. & Komenda, A. (2015). MAPlan. In Proceedings of the
Competition of Distributed and Multi-Agent Planners (CoDMAP-15), (pp. 8–10)

citations: 13 in GS

17. Vonásek, V. & Kulich, M. & Krajńık, T. & Saska, M. & Fǐser, D. & Petŕık, V. &
Přeučil, L. (2012). Techniques for modelling simulation environments for modular
robotics. FAC Proceedings Volumes, 45, 210–215.

citations: 6 in GS

18. Saska, M. & Vonásek, V. & Kulich, M. & Fǐser, D. & Krajńık, T. & Přeučil, L.
(2011). Bringing reality to evolution of modular robots: bio-inspired techniques for
building a simulation environment in the SYMBRION project. In: Proceedings of
the Reconfigurable Modular Robotics: Challenges of Mechatronic and Bio-Chemo-
Hybrid Systems, (pp. 1–6).

citations: 4 in GS

104 APPENDIX A. PUBLICATIONS

Bibliography

Alcázar, V., Borrajo, D., Fernández, S., & Fuentetaja, R. (2013). Revisiting regression
in planning. In Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI’13), (pp. 2254–2260).

Alcázar, V. & Torralba, Á. (2015). A reminder about the importance of computing and
exploiting invariants in planning. In Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15), (pp. 2–6).

Bäckström, C. & Nebel, B. (1995). Complexity results for SAS+ planning. Computational
Intelligence, 11 (4), 625–655.

Bernardini, S., Fagnani, F., & Smith, D. E. (2018). Extracting mutual exclusion invariants
from lifted temporal planning domains. Artificial Intelligence, 258, 1–65.

Bonet, B. (2013). An admissible heuristic for SAS+ planning obtained from the state
equation. In Proceedings of the 23rd International Joint Conference on Artificial Intel-
ligence (IJCAI’13), (pp. 2268–2274).

Bonet, B. & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,
129 (1–2), 5–33.

Bonet, B. & van den Briel, M. (2014). Flow-based heuristics for optimal planning: Land-
marks and merges. In Proceedings of the 24th International Conference on Automated
Planning and Scheduling (ICAPS’14), (pp. 47–55).

Bron, C. & Kerbosch, J. (1973). Finding all cliques of an undirected graph (algorithm
457). Commun. ACM, 16 (9), 575–576.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69 (1–2), 165–204.

Cazals, F. & Karande, C. (2008). A note on the problem of reporting maximal cliques.
Theoretical Computer Science, 407 (1-3), 564–568.

Chen, Y., Huang, R., Xing, Z., & Zhang, W. (2009). Long-distance mutual exclusion for
planning. Artificial Intelligence, 173 (2), 365–391.

Chen, Y., Xing, Z., & Zhang, W. (2007). Long-distance mutual exclusion for proposi-
tional planning. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI’07), (pp. 1840–1845).

Cresswell, S., Fox, M., & Long, D. (2002). Extending TIM domain analysis to handle
ADL constructs. In Knowledge Engineering Tools and Techniques for AI Planning:
AIPS’02 Workshop.

105

106 BIBLIOGRAPHY

Culberson, J. C. & Schaeffer, J. (1996). Searching with pattern databases. In Canadian
Conference on AI, volume 1081 of Lecture Notes in Computer Science, (pp. 402–416).
Springer.

Domshlak, C., Katz, M., & Shleyfman, A. (2012). Enhanced symmetry breaking in cost-
optimal planning as forward search. In Proceedings of the 22nd International Conference
on Automated Planning and Scheduling (ICAPS’12), (pp. 343–347).

Domshlak, C., Katz, M., & Shleyfman, A. (2013). Symmetry breaking: Satisficing plan-
ning and landmark heuristics. In Proceedings of the 23rd International Conference on
Automated Planning and Scheduling (ICAPS’13), (pp. 298–302).

Edelkamp, S. (2001). Planning with pattern databases. In Proceedings of the 6th European
Conference on Planning (ECP’21), (pp. 13–24).

Eriksson, S., Röger, G., & Helmert, M. (2017). Unsolvability certificates for classical
planning. In Proceedings of the 27th International Conference on Automated Planning
and Scheduling (ICAPS’17), (pp. 88–97).

Eriksson, S., Röger, G., & Helmert, M. (2018). A proof system for unsolvable planning
tasks. In Proceedings of the 28th International Conference on Automated Planning and
Scheduling (ICAPS’18), (pp. 65–73).

Fikes, R. E. & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189–208.

Fǐser, D. (2020). Lifted fact-alternating mutex groups and pruned grounding of classical
planning problems. In Proceedings of the 34th AAAI Conference on Artificial Intelli-
gence (AAAI’20). Accepted.

Fǐser, D. & Komenda, A. (2018). Fact-alternating mutex groups for classical planning.
Journal of Artificial Intelligence Research, 61, 475–521.

Fǐser, D., Torralba, Á., & Shleyfman, A. (2019). Operator mutexes and symmetries for
simplifying planning tasks. In Proceedings of the 33nd AAAI Conference on Artificial
Intelligence (AAAI’19), (pp. 7586–7593).

Fox, M. & Long, D. (1998). The automatic inference of state invariants in TIM. Journal
of Artificial Intelligence Research, 9, 367–421.

Fox, M. & Long, D. (1999). The detection and exploitation of symmetry in planning prob-
lems. In Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI’99), (pp. 956–961).

Franco, S., Lelis, L. H. S., & Barley, M. (2018). The Complementary2 planner in IPC
2018. In IPC 2018 planner abstracts, (pp. 32–36).

Franco, S., Lelis, L. H. S., Barley, M., Edelkamp, S., Martinez, M., & Moraru, I. (2018).
The Complementary1 planner in IPC 2018. In IPC 2018 planner abstracts, (pp. 28–31).

Franco, S., Torralba, A., Lelis, L. H., & Barley, M. (2017). On creating complemen-
tary pattern databases. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI’17), (pp. 4302–4309).

BIBLIOGRAPHY 107

Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability—A Guide to the
Theory of NP-Completeness. Freeman.

Gerevini, A. & Schubert, L. (1998). Inferring state-constraints for domain independent
planning. In Proceedings of the 15th National Conference of the American Association
for Artificial Intelligence (AAAI’98), (pp. 905–912).

Gerevini, A. & Schubert, L. (2000). Inferring state constraints in DISCOPLAN: Some new
results. In Proceedings of the 17th National Conference of the American Association
for Artificial Intelligence (AAAI’00), (pp. 761–767).

Haslum, P. (2009). hm(P) = h1(Pm): Alternative characterisations of the generalisation
from hmax to hm. In Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS’09), (pp. 354–357).

Haslum, P., Botea, A., Helmert, M., Bonet, B., & Koenig, S. (2007). Domain-independent
construction of pattern database heuristics for cost-optimal planning. In Proceedings
of the 22nd National Conference of the American Association for Artificial Intelligence
(AAAI’07), (pp. 1007–1012).

Haslum, P. & Geffner, H. (2000). Admissible heuristics for optimal planning. In Proceed-
ings of the 5th International Conference on Artificial Intelligence Planning Systems
(AIPS’00), (pp. 140–149).

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelli-
gence Research, 26, 191–246.

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks.
Artificial Intelligence, 173, 503–535.

Helmert, M. & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s
the difference anyway? In Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS’09), (pp. 162–169).

Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible abstraction heuristics for
optimal sequential planning. In Proceedings of the 17th International Conference on
Automated Planning and Scheduling (ICAPS’07), (pp. 176–183).

Helmert, M., Haslum, P., Hoffmann, J., & Nissim, R. (2014). Merge & shrink abstrac-
tion: A method for generating lower bounds in factored state spaces. Journal of the
Association for Computing Machinery, 61 (3), 16.1–16.63.

Hoffmann, J. & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Huang, R., Chen, Y., & Zhang, W. (2012). SAS+ planning as satisfiability. Journal of
Artificial Intelligence Research, 43, 293–328.

Junttila, T. & Kaski, P. (2007). Engineering an efficient canonical labeling tool for large
and sparse graphs. In Proceedings of the Nine Workshop on Algorithm Engineering and
Experiments (ALENEX’07), (pp. 135–149).

108 BIBLIOGRAPHY

Karp, R. M. (1972). Reducibility among combinatorial problems. In Proceedings of a
symposium on the Complexity of Computer Computations, (pp. 85–103).

McDermott, D. (2000). The 1998 AI planning systems competition. The AI Magazine,
21 (2), 35–55.

Moon, J. W. & Moser, L. (1965). On cliques in graphs. Israel Journal of Mathematics,
3 (1), 23–28.

Moraru, I., Edelkamp, S., Martinez, M., & Franco, S. (2018). Planning-pdbs planner. In
IPC 2018 planner abstracts, (pp. 69–73).

Mukherji, P. & Schubert, L. K. (2005). Discovering planning invariants as anomalies in
state descriptions. In Proceedings of the 15th International Conference on Automated
Planning and Scheduling (ICAPS-05), (pp. 223–230).

Mukherji, P. & Schubert, L. K. (2006). State-based discovery and verification of propo-
sitional planning invariants. In Proceedings of the 2006 International Conference on
Artificial Intelligence (ICAI), (pp. 465–471).

Nebel, B. (2000). On the compilability and expressive power of propositional planning
formalisms. Journal of Artificial Intelligence Research, 12, 271–315.

Pochter, N., Zohar, A., & Rosenschein, J. S. (2011). Exploiting problem symmetries in
state-based planners. In Proceedings of the 25th National Conference of the American
Association for Artificial Intelligence (AAAI’11).

Pommerening, F. & Helmert, M. (2015). A normal form for classical planning tasks. In
Proceedings of the 25th International Conference on Automated Planning and Schedul-
ing (ICAPS’15), (pp. 188–192).

Pommerening, F., Helmert, M., & Bonet, B. (2016). Higher-dimensional potential heuris-
tics for optimal classical planning. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI’17), (pp. 3636–3643).

Pommerening, F., Helmert, M., Röger, G., & Seipp, J. (2015a). From non-negative to
general operator cost partitioning. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI’15), (pp. 3335–3341).

Pommerening, F., Helmert, M., Röger, G., & Seipp, J. (2015b). From non-negative
to general operator cost partitioning: Proof details. Technical Report CS-2014-005,
University of Basel, Department of Mathematics and Computer Science.

Richter, S. & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research, 39, 127–177.

Riddle, P. J., Barley, M. W., Franco, S., & Douglas, J. (2015). Automated transformation
of PDDL representations. In Proceedings of the 8th Annual Symposium on Combinato-
rial Search (SOCS’15), (pp. 214–215).

Rintanen, J. (2000). An iterative algorithm for synthesizing invariants. In Proceedings
of the 17th National Conference of the American Association for Artificial Intelligence
(AAAI’00), (pp. 806–811).

BIBLIOGRAPHY 109

Rintanen, J. (2003). Symmetry reduction for SAT representations of transition systems. In
Proceedings of the 13th International Conference on Automated Planning and Schedul-
ing (ICAPS’03), (pp. 32–41).

Rintanen, J. (2008). Regression for classical and nondeterministic planning. In Proceedings
of the 18th European Conference on Artificial Intelligence (ECAI’08), (pp. 568–572).

Rintanen, J. (2012). Planning as satisfiability: Heuristics. Artificial Intelligence, 193,
45–86.

Rintanen, J., Heljanko, K., & Niemelä, I. (2006). Planning as satisfiability: parallel plans
and algorithms for plan search. Artificial Intelligence, 170 (12-13), 1031–1080.

Röger, G., Sievers, S., & Katz, M. (2018). Symmetry-based task reduction for relaxed
reachability analysis. In Proceedings of the 28th International Conference on Automated
Planning and Scheduling (ICAPS’18), (pp. 208–217).

Seipp, J. (2018). Fast downward scorpion. In IPC 2018 planner abstracts, (pp. 77–79).

Seipp, J. & Helmert, M. (2018). Counterexample-guided Cartesian abstraction refinement
for classical planning. Journal of Artificial Intelligence Research, 62, 535–577.

Seipp, J., Pommerening, F., & Helmert, M. (2015). New optimization functions for
potential heuristics. In Proceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS’15), (pp. 193–201).

Seipp, J., Pommerening, F., Röger, G., & Helmert, M. (2016). Correlation complexity of
classical planning domains. In Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI’16), (pp. 3242–3250).

Shleyfman, A., Katz, M., Helmert, M., Sievers, S., & Wehrle, M. (2015). Heuristics
and symmetries in classical planning. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI’15), (pp. 3371–3377).

Sievers, S., Wehrle, M., & Helmert, M. (2014). Generalized label reduction for merge-and-
shrink heuristics. In Proceedings of the 28th AAAI Conference on Artificial Intelligence
(AAAI’14), (pp. 2358–2366).

Sievers, S., Wehrle, M., & Helmert, M. (2016). An analysis of merge strategies for merge-
and-shrink heuristics. In Proceedings of the 26th International Conference on Automated
Planning and Scheduling (ICAPS’16), (pp. 294–298).

Sievers, S., Wehrle, M., Helmert, M., & Katz, M. (2017). Strengthening canonical pattern
databases with structural symmetries. In Proceedings of the 10th Annual Symposium
on Combinatorial Search (SOCS’17), (pp. 91–99).

Sievers, S., Wehrle, M., Helmert, M., Shleyfman, A., & Katz, M. (2015). Factored sym-
metries for merge-and-shrink abstractions. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI’15), (pp. 3378–3385).

Tomita, E., Tanaka, A., & Takahashi, H. (2006). The worst-case time complexity for
generating all maximal cliques and computational experiments. Theoretical Computer
Science, 363 (1), 28–42.

110 BIBLIOGRAPHY

van den Briel, M., Benton, J., Kambhampati, S., & Vossen, T. (2007). An LP-based
heuristic for optimal planning. In Proceedings of the 13th International Conference on
Principles and Practice of Constraint Programming (CP’07), (pp. 651–665).

	Introduction
	Outline and Contributions
	Relation to Published Work

	Related Work
	Background
	Technical Background
	Running Example

	Mutex and Mutex Group
	Relation Between Mutexes and Mutex Groups
	Complexity Analysis
	Summary

	Fact-Alternating Mutex Group
	Structure of Fact-Alternating Mutex Group
	Complexity Analysis
	h2-mutexes and Fact-Alternating Mutex Groups
	Inference of Fact-Alternating Mutex Groups
	Experimental Evaluation
	Comparison of Mutex Pairs
	Comparison of Mutex Groups
	Comparison of Running Times
	Translation to Finite Domain Representation

	Summary

	Pruning Tasks with Fact-Alternating Mutex Groups
	Pruning Algorithm
	Experimental Evaluation
	Forward Pruning of Planning Tasks
	Forward and Backward Pruning

	Summary

	Lifted Mutex Group
	PDDL and Grounding to STRIPS
	Lifted Mutex Groups
	Pruned Grounding
	Inference of Lifted FAM-Groups
	Experimental Evaluation
	Summary

	Strengthening Potential Heuristics
	Background
	Disambiguation
	Potential Heuristics
	Transition Normal Form

	Optimization Functions
	All States Potentials
	Conditioned Ensemble of All States Potentials
	Adding Constraint on Initial State

	Experimental Evaluation
	Summary

	Operator Mutex
	Background
	Operator Mutexes and Redundancy
	Inference of Operator Mutexes
	Abstractions
	Operators-as-Facts Compilation
	Critical-Path Heuristics
	Operators with Irreversible Add Effect

	Symmetries
	Destroying and Preserving Symmetries
	Inference of Redundant Operators
	Experimental Evaluation
	Summary

	Conclusion
	Publications
	Bibliography

