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Abstract

A lifted mutex group is a schematic first-order description of
sets of facts such that each set contains facts out of which at
most one can hold in any reachable state. It was previously
shown that lifted mutex groups can be used for pruning of
operators during grounding of PDDL tasks, i.e., it is possible
to prune unreachable and dead-end operators even before the
grounded representation is known. Here, we show that apply-
ing such a pruning technique does not require a modification
of the grounding procedure. Instead, it is possible to compile
the conditions under which we can use lifted mutex groups
to prune operators directly into the preconditions of lifted ac-
tions on the PDDL level. In fact, we show that such com-
pilation captures the pruning power of lifted mutex groups
perfectly.

1 Introduction
State invariants were studied in a variety of contexts (Fox
and Long 1998; Gerevini and Schubert 1998; Rintanen
2000; Haslum and Geffner 2000; Bonet and Geffner 2001;
Mukherji and Schubert 2005; Haslum 2009). One of the
most prominent state invariants are so-called mutex groups,
which are sets of facts out of which at most one can be part of
any reachable state. They are necessary for a concise trans-
lation from STRIPS representation, where states are sets of
facts, to finite domain representation, where states are as-
signments to multi-valued variables (Helmert 2009; Fišer
et al. 2021).

A fact-alternating mutex group (fam-group) (Fišer and
Komenda 2018) is a specific type of mutex group that be-
haves monotonically over state transitions. More specifi-
cally, given a reachable state s and a fam-group M , if
s∩M = ∅, then also s′∩M = ∅ for every state s′ reachable
from s. This property can be used for removing actions that
always lead to dead-end states (Fišer and Komenda 2018),
and it was recently shown by Fišer (2020) that their lifted
(first-order) descriptions (lifted fam-groups) can be used to
prune such actions during grounding of PDDL (McDermott
2000) tasks to the propositional (STRIPS) level, i.e., even
before the whole ground representation is known.

In this work, we follow the work of Fišer (2020) by show-
ing that pruning using lifted fam-groups can be compiled di-
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rectly into preconditions of lifted (PDDL) actions. We show
that the conditions, under which a ground action can be
recognized as unreachable or dead-end using a lifted fam-
group, can be exactly expressed as a formula over equality
predicates. The negation of such a formula can be directly
integrated into the precondition of a (lifted) action so that
the precondition cannot be satisfied in an unreachable state
or a state leading to a dead-end (to the extent of the pruning
power of lifted fam-groups). To this end, we propose a gen-
eral method for turning unification between lifted atoms into
a formula.

The practical implication of this contribution is that prun-
ing during grounding does not require a modification of the
grounding algorithm, but merely a compilation of the input
PDDL task into another PDDL task. Moreover, we show that
this compilation method can also be effortlessly used as on-
line pruning during search in case of lifted planning.

2 PDDL and STRIPS Planning Tasks
We consider PDDL tasks without axioms, conditional ef-
fects or formulae with quantifiers.

Definition 1. A PDDL task is a tuple P =
〈B, T ,V,P,A, ψI , ψG〉 where B is a non-empty set of
objects, T is a non-empty set of types containing a default
type t0 ∈ T . Objects and types are associated by a total
function D : T 7→ 2B such that D(t0) = B and for every
pair of types ti, tj ∈ T it holds that D(ti) ⊆ D(tj) or
D(ti) ⊇ D(tj) or D(ti) ∩ D(tj) = ∅. V is a denumerable
set of variable symbols, each v ∈ V has a type tvar(v) ∈ T .
P is a set of predicate symbols, each predicate p ∈ P

has arity ar(p) ∈ N0 and, in case ar(p) ≥ 1, an asso-
ciated type tpred(p, i) ∈ T for every i ∈ {1, ..., ar(p)}.
An atom is of the form p(s1, . . . , sn), where p ∈ P is a
predicate symbol, n = ar(p) is the arity of p, and each
si is either an object o ∈ D(tpred(p, i)), or a variable
v ∈ V with D(tvar(v)) ⊆ D(tpred(p, i)). For a given atom
α = p(s1, . . . , sn), V[α] ⊂ V denotes a set of variables
appearing in the atom, i.e., V[α] = {s1, . . . , sn} ∩ V , and
P[α] = p denotes the predicate of α. Given a set of atoms
X , we define V[X] =

⋃
x∈X V[x] and P[X] =

⋃
x∈X P[x].

A ground atom is an atom α such that V[α] = ∅.
Atoms can be connected into a formula with connectives

¬ (negation), ∧ (conjunction), and ∨ (disjunction) with their



standard meaning. A conjunction of atoms (i.e., positive lit-
erals) a1 ∧ . . . ∧ an is also identified with the correspond-
ing set of atoms {a1, . . . , an}, and we will use them in-
terchangeably when suitable. To simplify the notation, an
empty conjunction is interpreted as true (>), and an empty
disjunction is interpreted as false (⊥). Given a formula Φ,
V[Φ] denotes the set of all variables appearing in all atoms
from Φ, and P[Φ] is the set of all predicates appearing in Φ.
A formula Φ such that V[Φ] = ∅ is called a ground formula.

An action a ∈ A is a tuple a = 〈pre(a), add(a),del(a)〉
where pre(a) is an arbitrary formula called precondition,
and add(a) and del(a) are conjunctions of atoms, called
add effect, and delete effect, respectively. By V[a] =
V[pre(a)] ∪ V[add(a)] ∪ V[del(a)] we denote a set of vari-
ables appearing in the action. For every pair of actions
ai, aj ∈ A, ai 6= aj , it holds that V[ai] ∩ V[aj ] = ∅. A
ground action is an action a such that V[a] = ∅.
ψI and ψG are sets of ground atoms (i.e., conjunctions),

called initial state and goal, respectively.
We also assume to have the binary equality predicate sym-

bol (=) written in the infix notation, e.g., x = y, with its
standard meaning. Formally, we assume that = ∈ P , and
(o = o) ∈ ψI for every o ∈ B and the equality predicate
does not appear in any add or delete effect. Given a ground
formula Φ s.t. P[Φ] ⊆ {=}, we say Φ is true if ψI entails Φ
and false otherwise (assuming the standard interpretation of
ψI : ground atoms in ψI are true, otherwise they are false).

An action a ∈ A is called normalized if pre(a) is a con-
junction of atoms (positive literals), and a PDDL task P is
called normalized if every action a ∈ A is normalized.

Note that every PDDL task can be normalized, but it may
incur an exponential blow-up if the planning task contains
disjunctions (or existential quantifiers). Most planners (even
lifted ones) nowadays require a normalized PDDL task, so
the normalization is usually done in the pre-processing step.

Next, we define substitutions as total functions over ob-
jects and variables that are identity on objects, and respect
domains of variable types. Moreover, we define restrictions
of substitutions to some set of variables so that the restric-
tion is identity everywhere outside the given variables. We
use substitutions as a basis for moving from lifted to ground
representation and for a unification between atoms.

Definition 2. A total function σ : V ∪ B 7→ V ∪ B is called
a substitution if σ(o) = o for every object o ∈ B, and for
every variable v ∈ V it holds that either σ(v) ∈ D(tvar(v)),
or σ(v) ∈ V and D(tvar(σ(v))) ⊆ D(tvar(v)). We write σx
to denote σ(x).

We extend σ to atoms, actions, sets of variables, sets of
atoms, sets of actions, and formulae, i.e., given an atom
p(x1, . . . , xn), σp(x1, . . . , xn) denotes p(σx1, . . . , σxn);
given an action a ∈ A, σa = 〈σpre(a), σadd(a), σdel(a)〉;
given a set of variables or atoms or actions X =
{x1, . . . , xn}, σX = {σx1, . . . , σxn}; and given a formula
Φ, σΦ denotes the same formula where every x ∈ V ∪ B is
replaced with σx.

We write σσ′ for a composition of two substitutions, i.e.,
ρ = σσ′ if ρ(x) = σ(σ′(x)) for every x ∈ V ∪ B.

Given a substitution σ and a set of variables V , σ|V de-

notes a restriction of σ to V , i.e., σ|V (v) = σ(v) for every
v ∈ V and σ|V (v) = v for every other variable v 6∈ V .
Given a substitution σ and an atom or set of atoms X , σ|X
denotes σ|V[X].

Now, we define a grounding over a given set of variables
V as a more specific substitution that maps each variable
v ∈ V to an object and it is identity everywhere else (i.e., it
is a restriction to V ).

Definition 3. Given a set of variables V ∈ V , a substitution
σ is called a grounding over V if σ(v) ∈ D(tvar(v)) for
every variable v ∈ V and σ(v) = v for every v 6∈ V , i.e.,
σ maps every variable from V to an object, and it is identity
everywhere else.

A set of all groundings over V ∈ V is denoted by GV . For
a variable (object, atom, or action) x, GV (x) denotes the set
{σx | σ ∈ GV }. For a set of variables (set of atoms, or set
of actions) X , GV (X) denotes the set

⋃
σ∈GV σX . Given an

atom or set of atoms X , GX is a shorthand for GV[X].

With groundings as means to move from lifted to
grounded representation, we are ready to define STRIPS
tasks and full groundings of PDDL tasks obtained by replac-
ing all variables with all possible combinations of objects.

Definition 4. A STRIPS task Π is specified by a tuple
Π = 〈F ,O, sI , sG〉, where F is a set of facts, and O is a
set of operators. A state s ⊆ F is a set of facts, sI ⊆ F
is an initial state and sG ⊆ F is a goal specification. An
operator o is a tuple o = 〈pre(o), add(o),del(o)〉, where
pre(o) ⊆ F is a precondition of o, and add(o) ⊆ F and
del(o) ⊆ F are its add and delete effect, respectively. All
operators are well-formed, i.e., add(o) ∩ del(o) = ∅ and
pre(o)∩add(o) = ∅. An operator o is applicable in a state s
if pre(o) ⊆ s. The resulting state of applying an applicable
operator o in a state s is the state o[s] = (s\del(o))∪add(o).
A state s is a goal state if sG ⊆ s. A sequence of oper-
ators π = 〈o1, . . . , on〉 is applicable in a state s0 if there
are states s1, . . . , sn such that oi is applicable in si−1 and
si = oi[si−1] for i ∈ {1, . . . , n}. The resulting state of this
application is π[s0] = sn. π is called a plan if π[sI ] ⊇ sG,

A set of facts F ⊆ F is reachable if there exists an
operator sequence π such that F ⊆ π[sI ], otherwise it is
called unreachable. A state s is a dead-end state if sG 6⊆ s
and there is no applicable operator sequence π such that
sG ⊆ π[s]. An operator o ∈ O is called unreachable op-
erator if pre(o) is unreachable, and it is called dead-end
operator if for every reachable state s such that pre(o) ⊆ s
it holds that s is a dead-end state.

Definition 5. Given a normalized PDDL task P =
〈B, T ,V,P,A, ψI , ψG〉, the full grounding of P is a
STRIPS task Πfull

P = 〈F ,O, sI , sG〉 constructed as follows.
Let A =

⋃
a∈A GV[a](a), and X = ψI ∪ ψG ∪⋃

a∈A(pre(a)∪add(a)∪del(a)). Then F := {fx | x ∈ X}
where fx denotes a fact corresponding to the ground atom
x, sI := {fx | x ∈ ψI}, sG := {fx | x ∈ ψG}, and
O := {oa | a ∈ A} with pre(oa) = {fx | x ∈ pre(a)},
add(oa) = {fx | x ∈ add(a)} \ pre(oa), and del(oa) =
{fx | x ∈ del(a)} \ {fx | x ∈ add(a)}.



In practice, STRIPS tasks are created from PDDL tasks
using relaxed reachability and applying various other tech-
niques like irrelevance analysis (e.g., Helmert 2009). We use
the full grounding as a tool for proving certain properties of
lifted structures. The basic observation here is that if an op-
erator is unreachable or dead-end in the full grounding, then
it must be unreachable or dead-end, respectively, also in a
more restricted grounding.

3 Pruning with Lifted Mutex Groups
Here, we summarize previous findings related to pruning us-
ing (lifted) mutex groups relevant to our approach. Mutex
groups are state invariants stating that at most one of the
facts from a mutex group can be part of any reachable state.
Fact-alternating mutex groups (fam-groups) are more spe-
cific mutex groups that are monotonic in the sense that the
number of facts from a fam-group contained in a reachable
state cannot increase when transitioning to another state.

Definition 6. Let Π = 〈F ,O, sI , sG〉 denote a STRIPS
planning task. A set of facts M ⊆ F is called (i) a mutex
group if |M ∩ s| ≤ 1 for every reachable state s; and (ii) a
fact-alternating mutex group (fam-group) if |M ∩ sI | ≤ 1
and |M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)| for every oper-
ator o ∈ O.

It is easy to see that if an operator has a precondition con-
taining two facts from some mutex group, then such oper-
ator cannot be applied in any reachable state and therefore
it is unreachable. Furthermore, it was shown by Fišer and
Komenda (2018) that every fam-group is a mutex group, and
that fam-groups can be used for detecting dead-end opera-
tors: For every fam-groupM and an operator o applicable in
a reachable state s it holds that |M ∩ o[s]| ≤ |M ∩ s|. So, if
M contains a fact from the goal and for every reachable state
s, where the operator o is applicable, it holds thatM ∩s 6= ∅
and M ∩ o[s] = ∅, then o is a dead-end operator.

Proposition 7. Let Π be a STRIPS planning task with oper-
ators O and facts F , let M ⊆ F denote a set of facts, and
let o ∈ O denote an operator.

(A) If M is a mutex group and |M ∩ pre(o)| ≥ 2, then o
is an unreachable operator.

(B) If M is a fam-group and |M ∩ sG| ≥ 1 and
|M ∩ pre(o) ∩ del(o)| ≥ 1 and |M ∩ add(o)| = 0, then
o is a dead-end operator.

Lifted mutex groups are schematic (first-order) structures
whose grounding results in the set of mutex groups on the
ground (STRIPS) level. In this work, we focus on lifted mu-
tex groups proposed by Helmert (2009) in the context of
translation from PDDL to finite domain representation, and
further studied by Fišer (2020) in the context of operator
pruning during grounding process. In particular, what is im-
portant for us here is that Fišer showed that the lifted mutex
groups proposed by Helmert are actually lifted descriptions
of fam-groups with all the properties that come with it in-
cluding the potential for pruning dead-end operators.

In Definition 8, we formally introduce lifted mutex groups
and fam-groups by adapting the definition of Fišer (2020) to
our notation. In Proposition 9, we formally state how lifted

mutex groups (fam-groups) can be used for pruning opera-
tors. Although these are not new findings, we provide a very
brief proof to make it easier to connect lifted mutex groups
and the conditions on operator pruning to their grounded
counterparts discussed above.

Definition 8. Let Πfull
P denote the full grounding of P with

facts F , let φ and ψ denote disjoint sets of variables, i.e.,
φ, ψ ⊂ V and φ ∩ ψ = ∅, and let ν denote a set of atoms
such that V[ν] = φ ∪ ψ. The set of atoms ν is called lifted
mutex group (lifted fam-group) with fixed variables φ and
counted variables ψ if for every σ ∈ Gφ it holds that {fx ∈
F | x ∈ σ(Gψ(ν))} is a mutex group (fam-group) in Πfull

P .

Proposition 9. Let P = 〈B, T ,V,P,A, ψI , ψG〉 denote a
normalized PDDL task, let ν denote a lifted fam-group with
fixed variables φ and counted variables ψ, let a denote a
ground action and oa its counterpart in Πfull

P .
(A) If there exists a grounding σ ∈ Gφ such that

|σ(Gψ(ν)) ∩ pre(a)| ≥ 2, then oa is unreachable in Πfull
P .

(B) If there exists a grounding σ ∈ Gφ such that
|σ(Gψ(ν)) ∩ ψG| ≥ 1 and |σ(Gψ(ν)) ∩ pre(a) ∩ del(a)| ≥
1 and |σ(Gψ(ν)) ∩ add(a)| = 0, then oa is a dead-end op-
erator in Πfull

P .

Proof. Existence of σ implies {fx | x ∈ σ(Gψ(ν))} is a
fam-group in Πfull

P . So, (A) follows directly from Proposi-
tion 7(A) and (B) follows from Proposition 7(B).

Example 10. As an example, consider the follow-
ing lifted fam-group from the Barman domain: ν =
{holding(v, c),handempty(v)}, where v is a fixed vari-
able of type hand, and c is a counted variable of type
container. The lifted fam-group ν expresses that each
hand can hold at most one container. Suppose, we have
two hands D(hand) = {h1, h2}, and two containers
D(container) = {t1, t2}. Now, we have two possible
groundings σ1, σ2 ∈ G{v}: σ1 maps v to h1 and there-
fore σ1(G{c}(ν)) = {holding(h1, t1), holding(h1, t2),
handempty(h1)}, and σ2 maps v to h2 and therefore
σ2(G{c}(ν)) is the same as σ1(G{c}(ν)) except every h1

is replaced with h2, i.e., σ2(G{c}(ν)) = {holding(h2, t1),
holding(h2, t2), handempty(h2)}.

4 Unifiers as Formulae
As Proposition 9 requires a grounded action and lifted mutex
group, we use the notion of unifiers as a basis for the gener-
alization of conditions under which a lifted mutex group can
be used for pruning. A unifier is a specific type of substitu-
tion σ such that, given a set of atoms X , σX is a singleton.

Definition 11. LetX = {a1, . . . , an} denote a set of atoms.
A substitution σ is called unifier for X if σ is a restriction
to V[X] and σa1 = . . . = σan. A unifier σ for X is called
a most general unifier (MGU) for X if, for every unifier τ
for X , there exists a unifier ρ such that τ = ρσ.

To simplify the formalization, we tacitly assume than, un-
less explicitly specified otherwise, every unifier σ for a set
of atoms X maps every variable v ∈ V[X] either to itself
or to a fresh variable not used anywhere else, i.e., it never



“recycles” any variable already used in any atom or other
substitution.

It is well-known, that if there exists a unifier, then there
also exists a most general unifier and it is unique up to a
renaming of variables (e.g., Buss 1998). Moreover, note that
the grounding and unifier are complementary notions that
can be combined using composition. Given a set of atomsX ,
a grounding τ over V[X] is also a unifier if τX is a singleton,
and for every unifier σ for X there exists a grounding τ over
V[σX] such that τσX is a ground singleton.

Now, let us go back to Proposition 9. Let a denote an ac-
tion, and let τ denote a grounding over V[a]. The part (A)
states that we can prune a ground action τa if we find a lifted
mutex group ν and its grounding containing at least two dif-
ferent atoms from the precondition of τa. In other words, we
need to find a substitution σ that unifies two different pairs
of atoms at the same time, each pair having one atom from
ν and one atom from pre(a). Then we know that, for every
grounding ρ over V[σa], ρσa can be pruned. And similarly
for the part (B): We need to unify an atom from a lifted fam-
group ν with some atom from the precondition and delete
effect of an action a, and at the same time we need to unify
another atom from ν with the goal, and also make sure that
the substitution achieving both unifications does not unify
any atom from ν with any atom from the add effect of a.
In the following Proposition 12, we show that substitutions
unifying multiple sets of atoms at the same time are compo-
sitions of multiple unifiers.

Proposition 12. Let X and Y denote sets of atoms, and let
ρ denote a substitution restricted to V[X ∪ Y ]. If ρ|X is a
unifier for X and ρ|Y is a unifier for Y , then there exist a
unifier σ for X and a unifier σ′ for σY such that σ′σ = ρ.

Proof. Since ρ|X is a unifier for X , we already have σ =
ρ|X . Now it is enough to show that there exist an MGU µ for
σY and a substitution τ restricted to V[µσY ] s.t. (τµσ)|Y =
ρ|Y and (τµσ)|X = ρ|X , and therefore (τµ)|σX is identity.
So, as σ is identity on all variables V[Y ] \ V[X], we just
need to make sure (τµ)|σX is identity which follows trivially
from the fact that for every v ∈ V[X] ∩ V[Y ] it holds that
ρv = ρ|V[X]∩V[Y ](v) = ρ|X(v) = ρ|Y (v).

Determining substitutions is not enough for our purpose,
because we want to compile the conditions from Proposi-
tion 9 into preconditions of actions so that the preconditions
are satisfied only when the actions are not unreachable or
dead-end. Therefore, we need to express these conditions as
formulae. Definition 13 shows how to transform a substitu-
tion into a formula, and after that we prove that this formula
captures the substitution over a certain set of variables ex-
actly. Note, that the definition requires a substitution and a
set of variables, but makes no assumption about the relation
between them. This is intentional, because we need to find
(unifying) substitutions over variables from both lifted mu-
tex groups and actions, but we want to have formulae only
over the action variables.

Definition 13. Given a substitution σ and a set of variables
V ⊂ V , we define the formulae Φvar

σ,V , Φvar-obj
σ,V , Φsubtype

σ,V ,

and Φunifier
σ,V as follows:

Φvar
σ,V =

∧
{v,w}∈X

(v = w), (1)

where X = {{v, w} ⊆ V | v 6= w, σv = σw};

Φvar-obj
σ,V =

∧
v∈Y

(v = σv), (2)

where Y = {v ∈ V | σv ∈ B};

Φsubtype
σ,V =

∧
v∈Z

(
∨

o∈D(tvar(σv))

(v = o)), (3)

where Z = {v ∈ V | σv 6∈ B, tvar(σv) 6= tvar(v)}1; and

Φunifier
σ,V = Φvar

σ,V ∧ Φvar-obj
σ,V ∧ Φsubtype

σ,V . (4)

Moreover, given an atom or set of atoms X , Φvar
σ,X ,

Φvar-obj
σ,X , Φsubtype

σ,X , and Φunifier
σ,X are shorthands for Φvar

σ,V[X],

Φvar-obj
σ,V[X] , Φsubtype

σ,V[X] , and Φunifier
σ,V[X], respectively.

Eventually, we want to show that, given an action a and
a grounding τ over V[a], τ(Φunifier

σ,V ) is true if and only if σ
unifies some atom from a lifted mutex group with an atom
q from the action such that V = V[q]. This way, we will be
able to express unifiers (and their compositions) as formulae
and integrate them (or their negation) into preconditions of
actions. The formula Φunifier

σ,V is constructed so that it cap-
tures all properties of the given substitution σ relevant to our
purpose. First, Φvar

σ,V makes sure that if the given substitution
σ unifies two variables v and w, then the grounding τ has to
assign the same object to both v and w. Second, Φvar-obj

σ,V

deals with variables v that σ maps to a specific object, i.e.,
in this case τ needs to map v to σv. Third, σ may map a vari-
able v to another variable with a different type (in which case
D(tvar(σv)) ⊆ D(tvar(v))). So, Φsubtype

σ,V is constructed in
such a way that τ(Φsubtype

σ,V ) is true only if τ maps every such
variable v to an object from D(tvar(σv)).

Before we get to the main result of this section formulated
in Theorem 15, we show that the formula Φunifier

σ,Y is suffi-
cient to capture unification over the set of atoms Y whenever
σ is a unifier over some superset of Y .
Proposition 14. LetX denote a set of atoms, let Y ⊆ X , let
σ denote a unifier forX , and let τ ∈ GY denote a grounding
over V[Y ]. If τ(Φunifier

σ,Y ) is true, then τ is a unifier for Y .

Proof. Let Y = {a1, . . . , an} and since σ is a unifier for
Y , we can also write ai = p(xi,1, . . . , xi,m) for every
i ∈ {1, . . . , n} where m = ar(p). To prove the claim by
contradiction, we assume τ(Φunifier

σ,Y ) is true and τ is not a
unifier for Y , and therefore there exist i, j ∈ {1, . . . , n} and
k ∈ {1, . . . ,m} such that i 6= j and τxi,k 6= τxj,k and
therefore also xi,k 6= xj,k. Moreover, since σ is a unifier, we
have that σxi,k = σxj,k, and therefore we need to investi-
gate two cases. (i) (w.l.o.g.) xi,k ∈ B and xj,k ∈ V[Y ] and

1Recall that for every variable v and substitution σ it holds that
D(tvar(σv)) ⊆ D(tvar(v)) (Definition 2).



τxj,k 6= xi,k: Since τxj,k 6= xi,k and σxi,k = σxj,k, it fol-
lows that σxj,k = xi,k. Therefore from τΦvar-obj

σ,Y , we have
that τxj,k = σxj,k = xi,k which is a contradiction.

(ii) xi,k, xj,k ∈ V[Y ] and xi,k 6= xj,k and τxi,k 6= τxj,k:
Since σxi,k = σxj,k, we have from τΦvar

σ,Y that τxi,k =
τxj,k which is a contradiction.

Let σ denote a unifier for some set of atoms X , and
let Y ⊆ X . In the following theorem, we show that if
τ(Φunifier

σ,Y ) is true for some grounding τ over Y , then τ can
be extended over the variables from X so that such an ex-
tension is a unifier for the whole set X . And conversely, if
a grounding τ over V[X] (s.t. τ = ρσ for some substitu-
tion ρ) is a unifier for X , then τ(Φunifier

σ,Y ) is true. In this
sense, Φunifier

σ,Y captures the unifier σ perfectly. In particular,
whenever σ is an MGU, because every unifier for X can be
expressed using an MGU that is unique up to a renaming of
variables.

Theorem 15. Let X denote a set of atoms, let Y ⊆ X , let σ
denote a unifier for X , and let τ ∈ GY denote a grounding
over V[Y ]. Then τ(Φunifier

σ,Y ) is true if and only if there exists
a unifier ρ for σX such that (ρσ)|Y = τ (i.e., ρσ is a unifier
for X , and for every v ∈ V[Y ] it holds that ρσv = τv).

Proof. “⇒”: It follows from Proposition 14 that τ is a uni-
fier for Y . Let ρ denote a substitution such that ρσv = τv
for every v ∈ V[Y ] and it is identity everywhere else (i.e.,
(ρσ)|V[X]\V[Y ] = σ|V[X]\V[Y ]). Now we show that ρ is well-
defined. First, we need to show that ρ is a function, i.e.,
we need to show that for every v, v′ ∈ V[Y ] s.t. v 6= v′

and σv = σv′ it holds that τv = τv′ (because then we
can set ρ(σv) to τv for every v ∈ V[Y ]). And, indeed, it
follows from τ(Φvar

σ,Y ) being true that τv = τv′ for every
v, v′ ∈ V[Y ] s.t. v 6= v′ and σv = σv′.

Second, we need to show that ρ is a substitution, i.e., for
every w ∈ V[σY ] it holds that ρw ⊆ D(tvar(w)). This triv-
ially holds for v ∈ V[Y ] s.t. tvar(v) = tvar(σv) as τ is a
unifier for Y . For v ∈ V[Y ] s.t. tvar(v) 6= tvar(σv), it fol-
lows from τ(Φsubtype

σ,Y ) being true that τv ∈ D(tvar(σv)).
Therefore ρ is, indeed, a substitution, and therefore ρσ is a
unifier for X because σX is a singleton.

“⇐”: Suppose τ(Φunifier
σ,Y ) = ρσ(Φunifier

σ,Y ) is false. If
ρσ(Φvar

σ,Y ) is false, then there are variables v, w ∈ V[Y ]
such that v 6= w and σv = σw, but also ρσv 6= ρσw

which is a contradiction. If ρσ(Φvar-obj
σ,Y ) is false, then there

is a variable v ∈ V[Y ] such that σv ∈ B and ρσv 6= σv,
but ρ is identity on objects. If ρσ(Φsubtype

σ,Y ) is false, then
there is a variable v ∈ V[Y ] such that σv is a variable and
ρσv 6∈ D(tvar(σv)), which is a contradiction with Defini-
tion 2.

Corollary 16. Let X , Y , and τ be as before, and let σ de-
note an MGU for X . Then τ(Φunifier

σ,Y ) is true if and only if
there exists a unifier ρ for X such that ρ|Y = τ .

Proof. Since every unifier ρ can be expressed as ρ′σ for
some substitution ρ′, it follows from Theorem 15.

5 Pruning as Compilation
In this section, we show how to compile conditions from
Proposition 9 (or rather their negation) into preconditions of
actions so that their groundings are not unreachable or dead-
end. But before that consider the following situation.

Suppose we have the lifted fam-group ν from Exam-
ple 10, and two atoms q = holding(h1, t1) and q′ =
holding(h1, t2). Moreover, suppose we want to find a sub-
stitution ρ that unifies p = holding(v, c) from ν with both
q and q′ to prove that there is no reachable state containing
both q and q′ (i.e., no reachable state where a hand holds
two containers at the same time). This is clearly not pos-
sible, because ρ can map c to only one of t1 and t2. We
can, however, resolve this problem by creating a copy p′ of
p with the same fixed variable v, but rename the counted
variable c to another variable c′ with the same type. Then
we can prove there is no state containing both q and q′ using
Proposition 9(A) if we find a substitution unifying {p, q}
and {p′, q′}, because G{c}(p) = G{c′}(p′). To resolve this
(rather technical) issue with counted variables, we introduce
the following notion of renaming for lifted mutex groups.

Definition 17. Given a lifted mutex group ν with fixed vari-
ables φ and counted variables ψ = {c1, . . . , cn}, rν de-
notes a copy of ν where fixed variables remain the same,
but counted variables ψ are renamed to a fresh set of vari-
ables rψ = {c′1, . . . , c′n} not appearing in φ or ψ, i.e.,
tvar(c

′
i) = tvar(ci) for every i ∈ [n] and every ci is replaced

with c′i.

Proposition 18. Let ν denote a lifted mutex group with fixed
variables φ and counted variables ψ. Then (i) ν ∪ rν is a
lifted mutex group, and (ii) for every σ ∈ Gφ it holds that
σ(Gψ(ν)) = σ(Gψ∪rψ(ν ∪ rν)).

Proof. (i) follows directly from (ii) and (ii) follows from a
simple observation that Gψ(ν) = Grψ(rν) by definition.

Now, we are ready to put everything together. The con-
struction of formula identifying unreachable operators using
a given lifted mutex group ν is described in Algorithm 1,
and we prove in Theorem 19 that the formula captures the
pruning power of ν exactly, i.e., the formula is true if and
only if the corresponding ground action can be identified as
unreachable using ν. The idea is quite simple. We simply
iterate over all possible pairs of atoms from the precondi-
tion of the given action a, and over all pairs of atoms from
the lifted mutex group ν, where the atoms from ν do not
share counted variables (lines 2 and 3). Then we try to find
MGUs unifying atoms from pre(a) and ν (lines 4 and 5).
If we find them, then we construct the corresponding for-
mula (Φunifier

σ,q ∧Φunifier
σ′σ,q′ on line 7). Finally, on lines 8 to 10,

we add the formula ensuring that whenever we unify two
atoms from pre(a) with two atoms from ν, these atoms dif-
fer and therefore the whole formula τ(Φunifier

σ,q ∧ Φunifier
σ′σ,q′ ∧

¬Φunifier
σ′′,{q,q′}) is true for some grounding τ ∈ GV[a] only if

τ(a) is unreachable.

Theorem 19. Let a ∈ A denote an action, let τ ∈ GV[a]

denote a grounding of a, let ν denote a lifted mutex group
with fixed variables φ and counted variables ψ, and let Φ



Algorithm 1: Formula identifying unreachable operators
Input: A normalized action a, a lifted mutex group ν
Output: A formula Φ

1 Φ← ⊥;
2 for each q, q′ ∈ pre(a) s.t. q 6= q′ do
3 for each p ∈ ν, p′ ∈ rν s.t. p 6= p′ do
4 σ ← find a MGU for {p, q};
5 σ′ ← find a MGU for {σp′, σq′};
6 if both σ and σ′ exist then
7 Φ′ ← Φunifier

σ,q ∧ Φunifier
σ′σ,q′ ;

8 σ′′ ← find a MGU for {q, q′};
9 if σ′′ exists then

10 Φ′ ← Φ′ ∧ ¬Φunifier
σ′′,{q,q′};

11 Φ← Φ ∨ Φ′;

denote a formula returned by Algorithm 1 for a and ν. Then
τΦ is true if and only if there exists a grounding τ ′ ∈ Gφ
such that |τ ′(Gψ(ν)) ∩ τpre(a)| ≥ 2.

Proof. It follows from Proposition 18, that we can safely
replace ν with ν ∪ rν, and Gψ(ν) with Gψ∪rψ(ν ∪ rν).

“⇒”: Since τΦ = τ(Φ1 ∨ . . . ∨Φm) is true, we select an
arbitrary formula Φi such that τΦi is true (created in one of
the inner cycles of Algorithm 1). So we have q, q′ ∈ pre(a)
s.t. q 6= q′, p ∈ ν and p′ ∈ rν s.t. p 6= p′, an MGU σ
for {p, q}, an MGU σ′ for {σp′, σq′}, and an MGU σ′′ for
{q, q′} if such σ′′ exists.

First, if σ′′ exists, then τ(Φunifier
σ′′,V[{q,q′}]) is false, so it fol-

lows from Corollary 16 that τq 6= τq′. If σ′′ does not exist,
then τq 6= τq′ follows trivially.

Second, from Theorem 15 and τ(Φunifier
σ,V[q] ) being true it

follows that we have a unifier ρ for {σp, σq} s.t. (ρσ)|q =
τ |q . And since τq is a ground atom it follows that ρ|σp
is a grounding over V[σp]. Similarly, from Theorem 15
and τ(Φunifier

σ′σ,V[q′]) being true, we have a unifier ρ′ for
{σ′σp′, σ′σq′} s.t. (ρ′σ′σ)|q′ = τ |q′ and ρ′|σ′σp′ is a
grounding over V[σ′σp′]. Therefore ρ′σ′|σp′ is a ground-
ing over V[σp′]. Therefore ρ and ρ′σ′ agree on all vari-
ables V[σp] ∩ V[σp′]. And since V[p] ∩ V[p′] ⊆ φ it clearly
follows that there exists τ ′ ∈ Gφ that agrees with ρσ
and ρ′σ′σ on all variables V[p] ∩ V[p′]. So it follows that
ρσp, ρ′σ′σp′ ∈ τ ′(Gψ(ν)) and ρσp = τq ∈ τpre(a) and
ρ′σ′σp′ = τq′ ∈ τpre(a) and τp 6= τp′.

“⇐”: Since |ρ(Gψ(ν)) ∩ τpre(a)| ≥ 2, there exist ground
atoms g and g′ such that g, g′ ∈ τpre(a), and g, g′ ∈
τ ′(Gψ(ν)), and g 6= g′. And therefore there exist atoms
p ∈ ν, p′ ∈ rν, and q, q′ ∈ pre(a) such that p 6= p′,
q 6= q′, V[p] ∩ V[p′] ⊆ φ, and there exists a grounding
τ ′′ s.t. τ ′′p = τq = g 6= g′ = τ ′′p′ = τq′. Therefore
there exists a grounding ρ ∈ G{p,p′,q,q′} such that ρ|{p,q} is
a unifier for {p, q} and ρ|{p′,q′} is a unifier for {p′, q′} and
ρ|{q,q′} = τ |{q,q′}. So, it follows from Proposition 12 that
there exist (a) a unifier for X and therefore also an MGU σ
for X; (b) a unifier for σY and therefore also an MGU σ′

for σY ; and (c) a grounding τ ′′ over V[σ′σ{p, q, p′, q′}] s.t.
τ ′′σ′σ = ρ and therefore (τ ′′σ′σ)|{q,q′} = τ |{q,q′}. There-

Algorithm 2: Formula identifying dead-end operators
Input: A normalized action a, a lifted fam-group ν
Output: A formula Φ

1 Φ← ⊥;
2 for each q ∈ ψG, r ∈ pre(a), s ∈ del(a) do
3 for each p ∈ ν, p′ ∈ rν do
4 σ ← find a MGU for {p, q};
5 σ′ ← find a MGU for {σp′, r, s};
6 if both σ and σ′ exist then
7 Φ′ ← Φunifier

σ′σ,{r,s};
8 for each p′′ ∈ rν, t ∈ add(a) do
9 σ′′ ← find a MGU for {σ′σp′′, σ′σt};

10 if σ′′ exists then
11 Φ′ ← Φ′ ∧ ¬Φunifier

σ′′σ′σ,t;
12 Φ← Φ ∨ Φ′;

fore, it follows from Theorem 15 that both τ(Φunifier
σ,{p,q}) and

τ(Φunifier
σ′σ,{p′,q′}) are true. Finally, from τq 6= τq′ and Theo-

rem 15 it follows that either there does not exist an MGU σ′′

for {q, q′} or if it exists, then τ(Φunifier
σ′′,{q,q′}) is false.

Example 20. Consider the lifted fam-group ν from Exam-
ple 10, and the action fill-shot that has a precondition con-
taining atoms holding(xh, xc) and handempty(yh), where
xh, xc, and yh are the action’s variables (xh and yh are
of type hand, and xc has a type container). In this case,
Algorithm 1 will be able to find an MGU σ unifying
holding(xh, xc) and holding(v, c), and another MGU σ′

unifying σ(handempty(yh)) and handempty(v). So, as
holding(xh, xc) and handempty(yh) cannot be unified, we
get the resulting formula xh = yh (see Equation (1)).

Algorithm 2 encapsulates the construction of a formula
identifying dead-end operators given a lifted fam-group ν,
which we formally prove in Theorem 21. The idea is essen-
tially the same as before. We try to unify an atom from ν
with some goal ground atom, and then another atom from ν
with one atom from the action’s precondition and one atom
from its delete effect (lines 4 and 5). Note that since q is
a ground atom, then σr = r and σs = s. If we find such
unifiers, we construct the formula Φunifier

σ′σ,{r,s} (line 7), which
is equal to Φunifier

σ,q ∧ Φunifier
σ′σ,{r,s} because q is a ground atom

and therefore Φunifier
σ,q = Φunifier

σ,∅ = >. Finally, the cycle on
lines 8 to 11 constructs the formula excluding cases where
the action adds another atom unifiable with some atom from
ν. Note that rν on line 3 and on line 8 are different as each
one denotes a fresh renaming of the lifted fam-group ν.

Theorem 21. Let a ∈ A denote an action, let τ ∈ GV[a]

denote a grounding of a, let ν denote a lifted mutex with
fixed variables φ and counted variables ψ, and let Φ de-
note a formula returned by Algorithm 2 for a and ν. Then
τΦ is true if and only if there exists a grounding ρ ∈
Gφ such that |ρ(Gψ(ν)) ∩ τpre(a) ∩ τdel(a)| ≥ 1 and
|ρ(Gψ(ν)) ∩ τadd(a)| = 0 and |ρ(Gψ(ν)) ∩ ψG| ≥ 1.

Proof Sketch. Note that every atom from goal q ∈ ψG is
a ground atom, i.e., V[q] = ∅, and Φunifier

σ,∅ is true for any



Algorithm 3: Pruning via compilation
Input: A normalized action a, a set of lifted fam-groups M
Output: A modified action a

1 Φ← ⊥;
2 for each ν ∈M do
3 Φ′ ← Algorithm 1 for a and ν;
4 Φ′′ ← Algorithm 2 for a and ν;
5 Φ← Φ ∨ Φ′ ∨ Φ′′;
6 pre(a)← pre(a) ∧ ¬Φ;

substitution σ. Furthermore note that, for the same reason,
the unifier σ from line 4 is identity over all variables V[a]
and therefore σr = r ∈ pre(a) and σs = s ∈ del(a).
The rest can be proved analogously to Theorem 19: In
Algorithm 2, we go over every possible combination of
atoms p ∈ ψG, r ∈ pre(a), s ∈ del(a), find an atom from
ν that can be unified with the goal (the MGU σ), and under
such unification we find another atom that can be unified
with both precondition and delete effect (the MGU σ′).
Then we have from Theorem 15 that (i) if τ(Φunifier

σ′σ,{r,s})

is true, then there exists a corresponding groundings
ρ ∈ Gφ such that |ρ(Gψ(ν)) ∩ τpre(a) ∩ τdel(a)| ≥ 1
and |ρ(Gψ(ν)) ∩ ψG| ≥ 1; and (ii) we have
that if |ρ(Gψ(ν)) ∩ τpre(a) ∩ τdel(a)| ≥ 1 and
|ρ(Gψ(ν)) ∩ ψG| ≥ 1 hold, then the corresponding
MGUs σ and σ′ exist and τ(Φunifier

σ′σ,{r,s}) is true.
For the condition on the add effect, we can continue with

the same line of argument. Under the mapping σσ′, we
look for the unification of the lifted fam-group ν and add
effect add(a) and whenever we find such unifier σ′′ for
some t ∈ add(a), τ(Φunifier

σ′′σ′σ,V[t]) is false if and only if
|ρ(Gψ(ν)) ∩ τadd(a)| = 0 holds.

Example 22. Consider the following lifted fam-group
from the Barman domain: {contains(v1, v2), clean(v1),
used(v1, c)}, where v1 and v2 are fixed variables of
type shot and cocktail, respectively, and c is a counted
variable of type beverage (which is a parent type of
cocktail). Consider an action empty-shot having the atom
contains(xs, xb) in its precondition and delete effect, and
only the atom empty(xs) in its add effect (xs is of type
shot, and xb of type beverage). And suppose the goal in-
cludes contains(s, k), where s is an object of type shot
and k is an object of type cocktail. Now, we can find
an MGU σ unifying contains(v1, v2) with contains(s, k),
and then unify σ(contains(v1, v2)) = contains(s, k) and
contains(xs, xb). Finally, since empty(xs) is not unifi-
able with any atom from ν, we have the resulting formula
(xs = s) ∧ (xb = k) (see Equation (2)). That is, the ac-
tion empty-shot leads to a dead end whenever xs = s and
xb = k, because such action deletes the atom contains(s, k)
required by the goal, but the action does not replace it with
any other atom allowing to recover this atom again in any
subsequent state.

Algorithm 3 shows how to compile the pruning with lifted
mutex groups directly into preconditions of actions by com-
bining Algorithm 1 and Algorithm 2. We simply find the

formulae corresponding to conditions where actions are un-
reachable or dead-end, and then add negations of those for-
mulae into the preconditions.

Both Algorithm 1 and Algorithm 2, and therefore also Al-
gorithm 3, are polynomial in the size of the input normalized
PDDL task, because unification between two atoms is lin-
ear and all for-cycles iterate over a polynomially bounded
number of elements. However, these algorithms can gener-
ate complicated formulae. So, if negations of the generated
formulae contain disjunctions and they are added to actions’
preconditions, then the normalization of the resulting PDDL
task can cause an exponential blow-up of the number of nor-
malized actions.

6 Experimental Evaluation
The proposed method was implemented2 in C and evalu-
ated on a cluster with Intel E5-2660 processors and 30 min-
utes time and 4 GB memory limit for each process. Since
we proved in Theorem 19 and 21 that the pruning power
of our method is exactly the same as the one proposed by
Fišer (2020), we decided to focus our experimental evalu-
ation on different aspects here. So, besides evaluating the
compilation and grounding process, we focus on the appli-
cation of our method in lifted planning. We use the so-called
hard-to-ground (HTG) domains (Masoumi, Antoniazzi, and
Soutchanski 2015; Gnad et al. 2019; Corrêa et al. 2020;
Lauer et al. 2021), and domains from optimal and satisficing
tracks of International Planning Competitions (IPCs) from
1998 to 2018. We removed domains with conditional effects,
fully grounded domains, and duplicates, leaving 56 domains
and 3 464 tasks out of which 33 domains and 1 703 tasks
were affected by the compilation (29 domains and 1 485
tasks were affected by Algorithm 1; 10 domains and 544
tasks were affected by Algorithm 2).

We compare baseline (base), i.e., no compilation, with
three variants of Algorithm 3: un denotes the variant where
only unreachable operators are pruned (i.e., Algorithm 3
skips line 4); de denotes the variant pruning only dead-end
operators; and un-de denote full Algorithm 3. Two transla-
tors from PDDL to finite domain representation are evalu-
ated: Our translator written in C (dl) and the translator from
Fast Downward (Helmert 2006) written in Python, both im-
plementing datalog-based grounding introduced by Helmert
(2009). Lastly, we test our lifted planner implementing ideas
proposed by Corrêa et al. (2020) and using a successor gen-
erator based on the same code as the grounder in dl: We
use A? with the blind heuristic (blind), A? with the hmax

heuristic (hmax), greedy best-first-search with hadd (hadd)
(Bonet and Geffner 2001), and lazy greedy best-first search
with hadd (lz-hadd).

The compilation time, i.e., the time needed for parsing the
input PDDL files, normalization, application of Algorithm 3,
and subsequent second normalization, was almost always
negligible: the median over all tasks was less than one mil-
lisecond, and mean was 565 milliseconds. It took more than
one second only in the domains Organic-synthesis, Bar-
man, and Nomystery, where the median (mean) time was

2https://gitlab.com/danfis/cpddl, branch icaps23-pruning-lmg
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Figure 1: Number of normalized actions.
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Figure 2: Average number of atoms in preconditions of nor-
malized actions.

2.8 (124), 23.2 (29.1), and 2.4 (2.8) seconds, respectively.
As the compilation can generate disjunctions and there-

fore the number of normalized actions can grow exponen-
tially, we compare the number of normalized actions with
and without the compilation in Figure 1. Note that the num-
ber of actions can also decrease, because it may happen
that the whole lifted action is unreachable or dead-end (i.e.,
whenever Algorithm 1 or 2 return >). This happened in
16 Organic-synthesis, and 6 Airport tasks. The number of
actions more than doubled only in 20 tasks from Organic-
synthesis, the whole Woodworking domain, 22 tasks from
Trucks, and 6 tasks from Scanalyzer. The biggest increase
was due to the unreachability conditions in the tasks from
the Scanalyzer domain (from 2 to 128) and one task from
Organic-synthesis (from 5 to 340).

After the compilation, preconditions of actions can get
more complicated. To quantify how much and how often,
we compared the average number of atoms in preconditions
of normalized actions before and after the compilation (Fig-
ure 2). Note that preconditions of normalized actions are
conjunctions of atoms, so the compared numbers correspond
to average sizes of preconditions. The average number of
atoms in actions’ preconditions increases at most 7.2 times
(for un-de), it increases more than five times in only 27 tasks
for un-de, ten tasks for de, and 17 tasks for un. Furthermore,
it increases more than two times in 297, 200, and 82 tasks
for un-de, de, and un, respectively. So, considering the num-
ber of affected tasks is 1 703 (1 485 by un, and 544 by de),
it does not happen very often that the size of preconditions
grows significantly, but it tends to grow more with the dead-
end pruning (de) than with the unreachability pruning (un).

On one hand, the increased number of lifted actions can
never result in a higher number of ground actions. On the
other hand, more actions and more complicated precondi-
tions can result in a slower grounding (even with pruning)
or a bigger memory footprint of the grounding process.
dl-un-de was able to ground four more tasks in

Blocksworld, and one more task in Caldera and Childsnack,
and one less task in Tpp and Visitall (all HTG domains).
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Figure 3: Number of STRIPS operators after grounding.
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Figure 4: Translation time in seconds.

fd-un-de grounds one more task in Visitall and two fewer in
Logistics (both HTG). Also note that dl-un-de can ground
280 more HTG tasks than fd-un-de, which is not surprising
given fd-un-de is implemented in Python. We also show in
Figure 3 the number of STRIPS operators after grounding,
but since the pruning power of our method is exactly the
same as that of Fišer (2020), a more detailed analysis of the
number of pruned operators can be found there.

The compilation can slow down the translation because
of more complicated preconditions, but it can also speed up
the translation because pruning can make the state space
of the relaxed task smaller. Figure 4 shows the compari-
son of running times of the whole translation process. The
mean runtime of dl-base and dl-un-de was 32.4 and 35.9
seconds, respectively, and the median was 1.9 and 2.7 sec-
onds, respectively. So, our compilation leads more often
to a slowdown than to a speedup. In case of fd-base and
fd-un-de, the mean runtime was about 51 seconds for both,
and the median was 3.3 seconds for fd-base, and 3.1 sec-
onds fd-un-de. This means that the runtime of fd-base
was influenced by the compilation to a lesser extent than
dl-base.

Applying pruning of unreachable operators (un) in
lifted planners is more often detrimental than beneficial:
blind-un solves ten fewer tasks than blind, hmax-un
five fewer than hmax, hadd-un 17 fewer than hadd, and
lz-hadd-un 25 fewer than lz-hadd. The reason is that prun-
ing of unreachable operators cannot decrease the branching
factor as these operators are never considered in the forward



domain blind hmax hadd lz-hadd
base de base de base de base de

airport (50) 16 17 16 16 22 22 21 21
barman (74) 4 4 4 4 4 4 6 5
floortile (80) 2 10 2 2 14 14 13 16
parcprinter (70) 14 18 20 20 49 57 49 57
trucks (30) 2 5 3 4 8 9 9 11
woodworking (98) 12 13 0 0 0 0 0 0
others (142) 46 46 42 42 111 111 115 115
Σ (544) 96 113 87 88 208 217 213 225

Table 1: Number of solved tasks.

search. However, it can increase the time needed by the suc-
cessor generator because of the more complicated precon-
ditions of actions, and it could increase informativeness of
(delete-relaxed) heuristics because the pruning may remove
unreachable operators that are reachable in the relaxed plan-
ning task. Unfortunately, we did not observe any change of
the heuristic value for initial states, but we sometimes ob-
served a slowdown of the successor generator resulting in
the aforementioned lower coverage. For this reason, we fo-
cused on the pruning of dead-end operators (de) because this
kind of pruning can decrease the branching factor.

Table 1 summarizes the number of solved tasks by the
considered lifted planners over 10 domains and 544 tasks
affected by the de compilation. Executing Algorithm 2 on
the remaining 1 159 tasks, that were not modified by the de
compilation, was almost never detrimental. The only excep-
tions was one task in the Pipesworld-tankage domain and
one task in the Organic-synthesis domain solved by hmax
but not by hmax-de, and one task in the Logistics domain
solved by lz-hadd but not by lz-hadd-de. Table 1 shows
that dead-end pruning compiled into actions’ preconditions
can be sometimes beneficial. However, it seems to be less
beneficial when the search is guided by heuristics which is
not surprising. The comparison of the number of expanded
states on Figure 5 shows that, indeed, the pruning has a pos-
itive effect on the search. And the comparison of the number
of states reported by the heuristic as dead-end states (Fig-
ure 6) is also often higher with pruning. Overall, we see
only a small improvement, but for a small cost. That is, it
does not happen very often that applying pruning through
compilation has a detrimental effect, but sometimes it can
be beneficial. We think this might change in future, when
we see a more diverse set of hard-to-ground domains, and
other techniques for lifted planning.

7 Conclusion
Following on the previous work of Fišer (2020) focusing
on pruning of unreachable and dead-end actions using lifted
mutex groups, we have shown that such pruning can be left
to standard algorithms for grounding of PDDL tasks or suc-
cessor generation, because it can be compiled directly into
preconditions of actions. Furthermore, we have shown that
the proposed compilation preserves the pruning power of the
input lifted mutex groups perfectly. The experimental eval-
uation shows that the compilation can be beneficial for both
grounding and lifted planning and it is rarely detrimental.
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Figure 5: Number of expanded states (before the last f -layer
for blind and hmax; all for hadd and lz-hadd).
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Figure 6: Number of dead-end states.

Since the proposed method provides a general framework
for expressing unification of multiple atoms as formulae, we
think it would be interesting to see whether a similar ap-
proach can utilize also different types of lifted invariants
(e.g., Rintanen 2000). Another question we left for future
research is how the compilation affects symmetries (Röger,
Sievers, and Katz 2018), or whether the additional informa-
tion provided by the compilation cannot be utilized in find-
ing better join orders in grounders and (lifted) successor gen-
erators (Helmert 2009; Corrêa et al. 2020).
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