Operator Pruning using Lifted Mutex Groups via

Compilation on Lifted Level

Daniel Figer

Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
danfis@danfis.cz

Operator Pruning using Lifted Mutex Groups

1/

15

Representations of Classical Planning Tasks

PDDL - lifted representation

Types: (:types vehicle location)

Objects: (:objects carl car2 - vehicle A B C - location)
Predicates: (at ?x - vehicle 7y - location)

Action: (move ?v - vehicle 7f - location 7t - location)
Initial state: ¥, Goal g

STRIPS — ground representation

o Facts: F ={(at carl A), (at carl B), ...}

o State: s = {(at carl A), ..} CF

@ Operators O, o = (pre(o) C F,add(o) C F,del(o) C F)
@ Initial state I C F, Goal G C F.

Operator Pruning using Lifted Mutex Groups 2/15

Mutex Groups in STRIPS

Mutex Group (in STRIPS

A set of facts M C F is a mutex group if |[M N s| < 1 for every
reachable state s.

Fact-Alternating Mutex Group (in STRIPS)

A set of facts M C F is a fam-group if |[M N I| <1 and
|M Nadd(o)| < |M N pre(o) Ndel(o)| for every operator o € O.

Barman: Example fam-groups

e handempty(hand,), holding(hand;, shot;), holding(hand;, shaker;)

@ contains(shot, cocktaily),clean(shot;), used(shot;, cocktaily),
used(shot;, ingredient,), used(shot;, ingredient,)

Operator Pruning using Lifted Mutex Groups 3/15

Pruning Unreachable Operators in STRIPS

Facts from a mutex group are pairwise mutex, i.e., they cannot appear
together in any state.

Barman: Example Pruning of Unreachable Operators

Mutex group:
e handempty(hand;), holding(hand;, shot;), holding(hand;, shaker;)

Operator fill-shot(shoty, i, hand;, hand;,d) o:
pre(o) = {handempty(hand;), holding(hand;, shot;),...}

Operator Pruning using Lifted Mutex Groups 4/15

Pruning Unreachable Operators in STRIPS

Facts from a mutex group are pairwise mutex, i.e., they cannot appear
together in any state.

Barman: Example Pruning of Unreachable Operators
Mutex group:
@ handempty(hand;), holding(hand;, shot;), holding(hand;, shaker;)

Operator fill-shot(shoty, i, hand;, hand;,d) o:
pre(o) = {handempty(hand;), holding(hand;, shoty),...}

Operator Pruning using Lifted Mutex Groups 4/15

Pruning Dead-End Operators in STRIPS

Fam-groups can detect dead-end operators: Let o be an operator, let M
be a fam-group. If M NG # () and M N pre(o) Ndel(o) # () and
M Nadd(o) = 0, then o is a dead-end operator. (F & Komenda, 2018)

Barman: Example Pruning of Dead-End Operators

Fam-group M:
contains(shoti, cocktailj), clean(shot;), used(shot;, cocktaily),...

Goal G = {contains(shot;, cocktaily)}.

Operator empty-shot(hand;, shoty, cocktaily) o:

pre(o) = {holding(hand;, shot;), contains(shot;, cocktaily)}
del(o) = {contains(shot;, cocktail;)}

add(o) = {empty(shot;)}

Operator Pruning using Lifted Mutex Groups 5/15

Pruning Dead-End Operators in STRIPS

Fam-groups can detect dead-end operators: Let o be an operator, let M
be a fam-group. If M NG # () and M N pre(o) Ndel(o) # () and
M Nadd(o) = 0, then o is a dead-end operator. (F & Komenda, 2018)

Barman: Example Pruning of Dead-End Operators

Fam-group M:
contains(shoty, cocktailj), clean(shot;), used(shot;, cocktaily),...

Goal G = {contains(shot;, cocktaily)}.

Operator empty-shot(hand;, shoty, cocktaily) o:

pre(o) = {holding(hand;, shot;), contains(shot;, cocktaily)}
del(o) = {contains(shot;, cocktail;)}

add(o) = {empty(shot;)}

Operator Pruning using Lifted Mutex Groups 5/15

Pruning Dead-End Operators in STRIPS

Fam-groups can detect dead-end operators: Let o be an operator, let M
be a fam-group. If M NG # () and M N pre(o) Ndel(o) # () and
M Nadd(o) = 0, then o is a dead-end operator. (F & Komenda, 2018)

Barman: Example Pruning of Dead-End Operators

Fam-group M:
contains(shoty, cocktailj), clean(shot;), used(shot;, cocktaily),...

Goal G = {contains(shot;, cocktaily)}.

Operator empty-shot(hand;, shoty, cocktaily) o:

pre(o) = {holding(hand;, shot;), contains(shot;, cocktail;)}
del(o) = {contains(shot;, cocktail;)}

add(o) = {empty(shot;)}

Operator Pruning using Lifted Mutex Groups 5/15

Pruning Dead-End Operators in STRIPS

Fam-groups can detect dead-end operators: Let o be an operator, let M
be a fam-group. If M NG # () and M N pre(o) Ndel(o) # () and
M Madd(o) = 0, then o is a dead-end operator. (F & Komenda, 2018)

Barman: Example Pruning of Dead-End Operators

Fam-group M:
contains(shoti, cocktailj), clean(shot;), used(shot;, cocktaily),...

Goal G = {contains(shot;, cocktaily)}.

Operator empty-shot(hand;, shoty, cocktaily) o:

pre(o) = {holding(hand;, shot;), contains(shot;, cocktaily)}
del(o) = {contains(shot;, cocktail;)}

add(o) = {empty(shot;)}

Operator Pruning using Lifted Mutex Groups 5/15

Lifted (Fact-Alternating) Mutex Groups

Lifted fam-group:

@ handempty(v : hand), holding(v : hand, ¢ : conatiner)
where v is fixed variable, c is counted variable.

Corresponding ground fam-groups:
e handempty(hand,), holding(hand;, shot;), holding(hand;, shaker;)
@ handempty(hands), holding(hands, shot;), holding(hands, shaker;)

Operator Pruning using Lifted Mutex Groups 6/15

Lifted (Fact-Alternating) Mutex Groups

Lifted fam-group:

@ handempty(v : hand), holding(v : hand, ¢ : conatiner)
where v is fixed variable, ¢ is counted variable.

Corresponding ground fam-groups:
e handempty(hand,), holding(hand;, shot;), holding(hand;, shaker;)
@ handempty(hands), holding(hands, shot;), holding(hands, shaker;)

Operator Pruning using Lifted Mutex Groups 6/15

Lifted (Fact-Alternating) Mutex Groups

Lifted fam-group:

@ handempty(v : hand), holding(v : hand, ¢ : conatiner)
where v is fixed variable, ¢ is counted variable.

Corresponding ground fam-groups:
e handempty(hand,), holding(hand;, shot;), holding(hand;, shaker;)
@ handempty(hand,), holding(hand,, shoty), holding(hand,, shaker;)

Operator Pruning using Lifted Mutex Groups 6/15

Lifted (Fact-Alternating) Mutex Groups

Lifted fam-group:

@ handempty(v : hand), holding(v : hand, ¢ : conatiner)
where v is fixed variable, ¢ is counted variable.

Corresponding ground fam-groups:
e handempty(hand,), holding(hand;, shot;), holding(hand;, shaker)
@ handempty(hands), holding(hands, shot;), holding(hands, shaker;)

Operator Pruning using Lifted Mutex Groups 6/15

Pruning with Lifted Fam-Groups

Unifier

A substitution o is a function mapping variables and objects to variables

and objects so that (i) it acts as identity on objects, and (ii) mapping from
variables must respect types.

Given a set of atoms A, a substitution o is call a unifier for A if 0(A) is a
singleton.

Operator Pruning using Lifted Mutex Groups 7/15

Pruning with Lifted Fam-Groups

A substitution o is a function mapping variables and objects to variables
and objects so that (i) it acts as identity on objects, and (ii) mapping from
variables must respect types.

Given a set of atoms A, a substitution o is call a unifier for A if 0(A) is a

singleton.

Pruning of Unreachable Operator
e fam-group: handempty(v : hand), holding(v : hand, ¢ : conatiner)
@ Action: fill-shot(s : shot, ¢ : ingredient, hand;, hand;, d : dispenser)
pre(a) = {holding(handy, s), handempty(hand;), ...}
@ There is a unifier o: o(v) = hand;, o(c) = s for both
{holding(v, ¢), holding(hand;, s)} and
{handempty(v), handempty(hand;)}.

Operator Pruning using Lifted Mutex Groups 7/15

Pruning with Lifted Fam-Groups

A substitution o is a function mapping variables and objects to variables
and objects so that (i) it acts as identity on objects, and (ii) mapping from
variables must respect types.

Given a set of atoms A, a substitution o is call a unifier for A if 0(A) is a

singleton.

Pruning of Unreachable Operator
@ fam-group: handempty(v : hand), holding(v : hand, ¢ : conatiner)
@ Action: fill-shot(s : shot, ¢ : ingredient, hand;, hand;, d : dispenser)
pre(a) = {holding(handy, s), handempty(hand;), ...}
@ There is a unifier o: o(v) = hand;, o(c) = s for both
{holding(v, ¢), holding(hand;, s)} and
{handempty(v), handempty(hand;)}.

Operator Pruning using Lifted Mutex Groups 7/15

Pruning with Lifted Fam-Groups

A substitution o is a function mapping variables and objects to variables
and objects so that (i) it acts as identity on objects, and (ii) mapping from
variables must respect types.

Given a set of atoms A, a substitution o is call a unifier for A if 0(A) is a

singleton.

Pruning of Unreachable Operator
e fam-group: handempty(v : hand), holding(v : hand, ¢ : conatiner)

@ Action: fill-shot(s : shot, ¢ : ingredient, hand;, hand;, d : dispenser)
pre(a) = {holding(hand;, s), handempty(hand;), ...}

@ There is a unifier o: o(v) = hand;, o(c) = s for both
{holding(v, ¢), holding(hand;, s)} and
{handempty(v), handempty(hand;)}.

Operator Pruning using Lifted Mutex Groups 7/15

Pruning with Lifted Fam-Groups

A substitution o is a function mapping variables and objects to variables
and objects so that (i) it acts as identity on objects, and (ii) mapping from
variables must respect types.

Given a set of atoms A, a substitution o is call a unifier for A if 0(A) is a

singleton.

Pruning of Unreachable Operator
e fam-group: handempty(v : hand), holding(v : hand, ¢ : conatiner)
@ Action: fill-shot(s : shot, ¢ : ingredient, hand;, hand;, d : dispenser)
pre(a) = {holding(hand;, s), handempty(hand,), ...}
@ There is a unifier o: o(v) = hand;, o(c) = s for both
{holding(v, ¢), holding(hand;, s)} and
{handempty(v), handempty(hand;)}.

Operator Pruning using Lifted Mutex Groups 7/15

Pruning with Lifted Fam-Groups

A substitution o is a function mapping variables and objects to variables
and objects so that (i) it acts as identity on objects, and (ii) mapping from
variables must respect types.

Given a set of atoms A, a substitution o is call a unifier for A if 0(A) is a

singleton.

Pruning of Unreachable Operator
e fam-group: handempty(v : hand), holding(v : hand, ¢ : conatiner)
@ Action: fill-shot(s : shot, ¢ : ingredient, hand;, hand;, d : dispenser)
pre(a) = {holding(handy, s), handempty(hand;), ...}
@ There is a unifier o: o(v) = hand;, o(c) = s for both
{holding(v, ¢), holding(hand;, s)} and
{handempty(v), handempty(hand;)}.

Operator Pruning using Lifted Mutex Groups 7/15

Experimental Evaluation: Percentage of Pruned Operators

Percentage of Pruned Operators (IPC 2006-2018) (AAAI'20)

domain #ps | unreach | +dead-end
agricola 20 0.00 0.00
barman* 74 15.42 45.95
citycar* 40 0.00 1.61
flashfill 18 0.10 0.10
floortile* 70 0.00 22.79
organic-synthesis* 7 11.44 23.11
parcprinter* 30 0.00 40.83
parking 80 3.09 3.09
scanalyzer 30 1.34 1.34
spider 15 3.47 3.47
trucks* 30 0.00 82.14
woodworking* 30 0.00 10.08
overall from above | 444 3.52 21.52
overall 1247 1.25 7.66

Operator Pruning using Lifted Mutex Groups 8/15

Experimental Evaluation: Percentage of Pruned Operators

Percentage of Pruned Operators (IPC 2006-2018) (AAAI'20)

domain #ps | unreach | +dead-end
agricola 20 0.00 0.00
barman* 74 15.42 45.95
citycar* 40 0.00 1.61
flashfill 18 0.10 0.10
floortile* 70 0.00 22.79
organic-synthesis* 7 11.44 23.11
parcprinter* 30 0.00 40.83
parking 80 3.09 3.09
scanalyzer 30 1.34 1.34
spider 15 3.47 3.47
trucks* 30 0.00 82.14
woodworking* 30 0.00 10.08
overall from above | 444 3.562 21.52
overall 1247 1.25 7.66

We need to modify the grounding algorithm.

Unifier as a Formula

Given a substitution o and a set of variables V' C V, we define:

= N\ (=w), (1)

{v,w}eX

where X = {{v,w} CV | v # w,ov = ow};

var-obj
oM = A (v =ov),)
veY

where Y = {v € V | ov € B};

ey = ANC \ (w=o)), 3)

vEZ 0€ED(Tyar(ov))
where Z = {v € V | 0v & B, Tyar(0v) # Tyar(v)}; and

unifier __ gmvar var-obj subtype
@U,V - @U,V A (I)U,V N (I)U,V . (4)

Operator Pruning using Lifted Mutex Groups 9/15

Unifier as a Formula

Given a substitution o and a set of variables V' C V, we define:

ey = N\ (v=w), (1)

{v,wreX
where X = {{v,w} CV | v # w,ov = ow};
e = N (v =00), ()
veY

where Y = {v € V | ov € B};

ovre= A/ (w=o)), (3)

VEZ 0€D(Tuar(ov))
where Z = {v € V | ov & B, Tyar(oV) # Tyar(v)}; and
DU = B A BT N B (4)
Formula ngéﬁer captures unifier o perfectly.

Operator Pruning using Lifted Mutex Groups 9/15

Pruning via Compilation

Lifted fam-group:
M = handempty (v : hand), holding(v : hand, ¢ : conatiner)

Action fill-shot(s : shot, i : ingredient, h; : hand, ho : hand, d : dispenser)
pre(o) = {handempty(h1), holding(hs, s), ...}

Operator Pruning using Lifted Mutex Groups 10/15

Pruning via Compilation

Lifted fam-group:
M = handempty (v : hand), holding(v : hand, ¢ : conatiner)

Action fill-shot(s : shot, i : ingredient, /; : hand, ho : hand, d : dispenser)
pre(o) = {handempty(h1), holding(hs, s), ...}

e Unifier 01, 01(v) = o1(h1) = x, for
{handempty(h;), handempty(v)}

Operator Pruning using Lifted Mutex Groups 10/15

Pruning via Compilation

Lifted fam-group:
M = handempty (v : hand), holding(v : hand, ¢ : conatiner)

Action fill-shot(s : shot, i : ingredient, h; : hand, hy : hand, d : dispenser)
pre(o) = {handempty(h1), holding(hs, s), ...}

e Unifier 01, 01(v) = o1(h1) = x, for
{handempty(h;), handempty(v)}

o Unifier 09, 02(2) = 02(h2) =y, 02(c) = 02(s) = 2, for
o1{holding(hs, s), holding(v, ¢)} = {holding(/2, s), holding(z, c)}

Operator Pruning using Lifted Mutex Groups 10/15

Pruning via Compilation

Lifted fam-group:
M = handempty (v : hand), holding(v : hand, ¢ : conatiner)

Action fill-shot(s : shot, i : ingredient, h; : hand, ho : hand, d : dispenser)
pre(o) = {handempty(h1), holding(hs, s), ...}

e Unifier o1, 01(v) = 01(hy) = z, for
{handempty(h;), handempty(v)}

o Unifier 09, 02(x) = 02(h2) =y, 02(c) = 02(s) = 2, for
o1{holding(hs, s), holding(v, ¢)} = {holding(hs, s), holding(z, c)}

@ Therefore fill-shot(s, i, hi, ha,d) is recognized as unreachable with M

H : unifier unifier ;
if and only if q)ol,{h1} A @02017%275} is true.

Operator Pruning using Lifted Mutex Groups 10/15

Pruning via Compilation

Lifted fam-group:
M = handempty (v : hand), holding(v : hand, ¢ : conatiner)

Action fill-shot(s : shot, i : ingredient, h; : hand, ho : hand, d : dispenser)
pre(o) = {handempty(h1), holding(hs, s), ...}

e Unifier o1, 01(v) = 01(hy) = z, for
{handempty(h;), handempty(v)}

o Unifier 09, 02(x) = 02(h2) =y, 02(c) = 02(s) = 2, for
o1{holding(hs, s), holding(v, ¢)} = {holding(hs, s), holding(z, c)}
@ Therefore fill-shot(s, i, hi, ha,d) is recognized as unreachable with M

: : unifier unifier :
if and only if (I)crl,{fn} A q)azcrl,{hz,s} is true.

@ Therefore, we can prune fill-shot by extending its preconditions with
_|((I)uniﬁer} A (I)uniﬁer) _ (hl ?é hg)

o1,{h1 o201,{h2,s}

Operator Pruning using Lifted Mutex Groups 10/15

Pruning via Compilation

@ The pruning power is exactly the same as before, but we do not need
to modify the grounding algorithm.

@ The pruning automatically carries to other methods, because it is
directly encoded in the PDDL task. For example, successor generator
for lifted planning.

@ There is, however, a price to pay: The resulting formulas can inccur
an exponential blow-up when normalized to conjunctions.

Operator Pruning using Lifted Mutex Groups 11/15

Experimental Results

@ un: unreachability, de: dead-ends

@ 56 (HTG + Optimal and satisficing IPC) domains, 3464 tasks
@ 26 domains and 1485 tasks affcted by un

@ 10 domains and 544 tasks affcted by de

10% - a 10% - f 0% a
g .o [} .
o

10M}, | 101} = 1043 |

un-de

! ! ! ! ! !
10t 10® 10t 10® 10t 10®
base base base

Figure: Number of normalized actions.

Operator Pruning using Lifted Mutex Groups 12/15

Experimental Results

| | |
100t 10t 10®
dl-base

Figure: Translation time in seconds.

Operator Pruning using Lifted Mutex Groups

Experimental Results

. blind hmax hadd 1z-hadd
domain base de base de base de base de
airport (50) 16 17 16 16 22 22 21 21
barman (74 4 4 4 4 4 4 6 5
floortile (80 2 10 2 2 14 14| 13 16
parcprinter (70) 14 18| 20 20| 49 57| 49 57
trucks (30) 2 5 3 4 8 9 9 11
woodworking (98)| 12 13 0 o0 0 o0 0 0
others (142) 46 46| 42 42| 111 111| 115 115
Y (544) 96 113| 87 88| 208 217| 213 225
Table: Number of solved tasks.
uns. T T uns. T 7 q)Lll’lS. T T
'%)10 - /] %10 - s S 07|)
g 103} . % 103} A E 103k loa: |
| | Sl L ! 2
10" 1 10! (A LRy (AN
10" 10° 10°g 10" 10° 10°g 10110 10° 2
hmax * hadd ~ 1z-hadd ~°

Figure: Number of dead-end states.

Experimental Results

uns. T uns. uns. uns.
107~ +
Q
@ [10°H B 10°- - T 10° |- B
07 109 3 3
°
E, 3 £ §103, - g103, - EIOS* .
S10° B 5 g 0 N
e B 1 ’ | o A | =l A |
10 10 10 10
| | | | | | | | | | | | |
10! 10° 10° 107% 10t 10° 10° ¢ 10t 10° 10° ¥ 10 10° 10° 4
blind . hmax s hadd = lz-hadd 7

Figure: Number of expanded states (before the last f-layer for blind and hmax;
all for hadd and 1z-hadd).

Operator Pruning using Lifted Mutex Groups

