Operator Pruning using Lifted Mutex Groups via Compilation on Lifted Level

Daniel Fišer

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany danfis@danfis.cz

Representations of Classical Planning Tasks

PDDL – lifted representation

- Types: (:types vehicle location)
- Objects: (:objects car1 car2 vehicle A B C location)
- Predicates: (at ?x vehicle ?y location)
- Action: (move ?v vehicle ?f location ?t location)
- Initial state: ψ_I , Goal ψ_G

STRIPS – ground representation

- Facts: $\mathcal{F} = \{ (at car1 A), (at car1 B), ... \}$
- State: $s = \{ (at car1 A), ... \} \subseteq \mathcal{F}$
- Operators \mathcal{O} , $o = \langle \operatorname{pre}(o) \subseteq \mathcal{F}, \operatorname{add}(o) \subseteq \mathcal{F}, \operatorname{del}(o) \subseteq \mathcal{F} \rangle$
- Initial state $I \subseteq \mathcal{F}$, Goal $G \subseteq \mathcal{F}$.

Mutex Groups in STRIPS

Mutex Group (in STRIPS)

A set of facts $M \subseteq \mathcal{F}$ is a **mutex group** if $|M \cap s| \le 1$ for every reachable state s.

Fact-Alternating Mutex Group (in STRIPS)

A set of facts $M \subseteq \mathcal{F}$ is a **fam-group** if $|M \cap I| \le 1$ and $|M \cap \operatorname{add}(o)| \le |M \cap \operatorname{pre}(o) \cap \operatorname{del}(o)|$ for every operator $o \in \mathcal{O}$.

Barman: Example fam-groups

- $\bullet \ \operatorname{handempty}(\mathtt{hand}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shaker}_1)$
- $contains(shot_1, cocktail_1), clean(shot_1), used(shot_1, cocktail_1), used(shot_1, ingredient_1), used(shot_1, ingredient_2)$

Pruning Unreachable Operators in STRIPS

Facts from a mutex group are pairwise mutex, i.e., they cannot appear together in any state.

Barman: Example Pruning of Unreachable Operators

Mutex group:

 $\bullet \ \operatorname{handempty}(\mathtt{hand}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shaker}_1)$

```
Operator fill-shot(\mathtt{shot}_1, \mathtt{i}, \mathtt{hand}_1, \mathtt{hand}_1, \mathtt{d}) o: \mathrm{pre}(o) = \{\mathtt{handempty}(\mathtt{hand}_1), \mathtt{holding}(\mathtt{hand}_1, \mathtt{shot}_1), \ldots \}
```

Pruning Unreachable Operators in STRIPS

Facts from a mutex group are pairwise mutex, i.e., they cannot appear together in any state.

Barman: Example Pruning of Unreachable Operators

Mutex group:

 $\bullet \ \operatorname{handempty}(\mathtt{hand}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shaker}_1)$

```
Operator fill-shot(\mathtt{shot}_1, \mathtt{i}, \mathtt{hand}_1, \mathtt{hand}_1, d) o:

\mathtt{pre}(o) = \{\mathtt{handempty}(\mathtt{hand}_1), \mathtt{holding}(\mathtt{hand}_1, \mathtt{shot}_1), \ldots \}
```

Fam-groups can detect dead-end operators: Let o be an operator, let M be a fam-group. If $M\cap G\neq\emptyset$ and $M\cap\operatorname{pre}(o)\cap\operatorname{del}(o)\neq\emptyset$ and $M\cap\operatorname{add}(o)=\emptyset$, then o is a dead-end operator. (F & Komenda, 2018)

```
Fam-group M: contains(shot<sub>1</sub>, cocktail<sub>1</sub>), clean(shot<sub>1</sub>), used(shot<sub>1</sub>, cocktail<sub>1</sub>),... Goal G = \{ \text{contains}(\text{shot}_1, \text{cocktail}_1) \}. Operator empty-shot(hand<sub>1</sub>, shot<sub>1</sub>, cocktail<sub>1</sub>) o: pre(o) = \{ \text{holding}(\text{hand}_1, \text{shot}_1), \text{contains}(\text{shot}_1, \text{cocktail}_1) \} del(o) = \{ \text{contains}(\text{shot}_1, \text{cocktail}_1) \} add(o) = \{ \text{empty}(\text{shot}_1) \}
```

Fam-groups can detect dead-end operators: Let o be an operator, let M be a fam-group. If $M\cap G\neq\emptyset$ and $M\cap \operatorname{pre}(o)\cap \operatorname{del}(o)\neq\emptyset$ and $M\cap\operatorname{add}(o)=\emptyset$, then o is a dead-end operator. (F & Komenda, 2018)

```
Fam-group M:
\operatorname{contains}(\operatorname{shot}_1, \operatorname{cocktail}_1), \operatorname{clean}(\operatorname{shot}_1), \operatorname{used}(\operatorname{shot}_1, \operatorname{cocktail}_1), \dots
\operatorname{Goal} G = \{\operatorname{contains}(\operatorname{shot}_1, \operatorname{cocktail}_1)\}.
\operatorname{Operator} \operatorname{empty-shot}(\operatorname{hand}_1, \operatorname{shot}_1, \operatorname{cocktail}_1) \ o : \operatorname{pre}(o) = \{\operatorname{holding}(\operatorname{hand}_1, \operatorname{shot}_1), \operatorname{contains}(\operatorname{shot}_1, \operatorname{cocktail}_1)\}
\operatorname{del}(o) = \{\operatorname{contains}(\operatorname{shot}_1, \operatorname{cocktail}_1)\}
\operatorname{add}(o) = \{\operatorname{empty}(\operatorname{shot}_1)\}
```

Fam-groups can detect dead-end operators: Let o be an operator, let M be a fam-group. If $M \cap G \neq \emptyset$ and $M \cap \operatorname{pre}(o) \cap \operatorname{del}(o) \neq \emptyset$ and $M \cap \operatorname{add}(o) = \emptyset$, then o is a dead-end operator. (F & Komenda, 2018)

```
Fam-group M:
\operatorname{contains}(\operatorname{shot}_1, \operatorname{cocktail}_1), \operatorname{clean}(\operatorname{shot}_1), \operatorname{used}(\operatorname{shot}_1, \operatorname{cocktail}_1), \dots
\operatorname{Goal} G = \{\operatorname{contains}(\operatorname{shot}_1, \operatorname{cocktail}_1)\}.
\operatorname{Operator} \operatorname{empty-shot}(\operatorname{hand}_1, \operatorname{shot}_1, \operatorname{cocktail}_1) \ o : \\ \operatorname{pre}(o) = \{\operatorname{holding}(\operatorname{hand}_1, \operatorname{shot}_1), \operatorname{contains}(\operatorname{shot}_1, \operatorname{cocktail}_1)\} \\ \operatorname{del}(o) = \{\operatorname{contains}(\operatorname{shot}_1, \operatorname{cocktail}_1)\} \\ \operatorname{add}(o) = \{\operatorname{empty}(\operatorname{shot}_1)\}
```

Fam-groups can detect dead-end operators: Let o be an operator, let M be a fam-group. If $M \cap G \neq \emptyset$ and $M \cap \operatorname{pre}(o) \cap \operatorname{del}(o) \neq \emptyset$ and $M \cap \operatorname{add}(o) = \emptyset$, then o is a dead-end operator. (F & Komenda, 2018)

```
\begin{aligned} & \mathsf{Fam\text{-}group}\ M: \\ & \mathsf{contains}(\mathsf{shot}_1, \mathsf{cocktail}_1), \mathsf{clean}(\mathsf{shot}_1), \mathsf{used}(\mathsf{shot}_1, \mathsf{cocktail}_1), \dots \\ & \mathsf{Goal}\ G = \{\mathsf{contains}(\mathsf{shot}_1, \mathsf{cocktail}_1)\}. \\ & \mathsf{Operator}\ \mathsf{empty}\text{-}\mathsf{shot}(\mathsf{hand}_1, \mathsf{shot}_1, \mathsf{cocktail}_1)\ o: \\ & \mathsf{pre}(o) = \{\mathsf{holding}(\mathsf{hand}_1, \mathsf{shot}_1), \mathsf{contains}(\mathsf{shot}_1, \mathsf{cocktail}_1)\} \\ & \mathsf{del}(o) = \{\mathsf{contains}(\mathsf{shot}_1, \mathsf{cocktail}_1)\} \\ & \mathsf{add}(o) = \{\mathsf{empty}(\mathsf{shot}_1)\} \end{aligned}
```

Lifted fam-group:

• handempty(v: hand), holding(v: hand, c: conatiner) where v is **fixed** variable, c is **counted** variable.

- $\bullet \ \operatorname{handempty}(\mathtt{hand}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shaker}_1)$
- $\bullet \ \operatorname{handempty}(\mathtt{hand}_2), \operatorname{holding}(\mathtt{hand}_2, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_2, \mathtt{shaker}_1)$

Lifted fam-group:

• handempty(v: hand), holding(v: hand, c: conatiner) where v is **fixed** variable, c is **counted** variable.

- $handempty(hand_1), holding(hand_1, shot_1), holding(hand_1, shaker_1)$
- $\bullet \ \operatorname{handempty}(\mathtt{hand}_2), \operatorname{holding}(\mathtt{hand}_2, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_2, \mathtt{shaker}_1)$

Lifted fam-group:

• handempty(v: hand), holding(v: hand, c: conatiner) where v is **fixed** variable, c is **counted** variable.

- $\bullet \ \operatorname{handempty}(\mathtt{hand}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shaker}_1)$
- $\bullet \ \operatorname{handempty}(\mathtt{hand}_2), \operatorname{holding}(\mathtt{hand}_2, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_2, \mathtt{shaker}_1)$

Lifted fam-group:

• handempty(v: hand), holding(v: hand, c: conatiner) where v is **fixed** variable, c is **counted** variable.

- $\bullet \ \operatorname{handempty}(\mathtt{hand}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_1, \mathtt{shaker}_1)$
- $\bullet \ \operatorname{handempty}(\mathtt{hand}_2), \operatorname{holding}(\mathtt{hand}_2, \mathtt{shot}_1), \operatorname{holding}(\mathtt{hand}_2, \mathtt{shaker}_1)$

Unifier

A **substitution** σ is a function mapping variables and objects to variables and objects so that (i) it acts as identity on objects, and (ii) mapping from variables must respect types.

Given a set of atoms A, a substitution σ is call a **unifier for** A if $\sigma(A)$ is a singleton.

Unifier

A **substitution** σ is a function mapping variables and objects to variables and objects so that (i) it acts as identity on objects, and (ii) mapping from variables must respect types.

Given a set of atoms A, a substitution σ is call a **unifier for** A if $\sigma(A)$ is a singleton.

- fam-group: handempty(v: hand), holding(v: hand, c: conatiner)
- Action: fill-shot(s: shot, i: ingredient, \mathtt{hand}_1 , \mathtt{hand}_1 , d: dispenser) $\mathtt{pre}(a) = \{\mathtt{holding}(\mathtt{hand}_1, s), \mathtt{handempty}(\mathtt{hand}_1), \ldots\}$
- There is a unifier σ : $\sigma(v) = \operatorname{hand}_1, \sigma(c) = s$ for both $\{\operatorname{holding}(v,c), \operatorname{holding}(\operatorname{hand}_1,s)\}$ and $\{\operatorname{handempty}(v), \operatorname{handempty}(\operatorname{hand}_1)\}.$

Unifier

A **substitution** σ is a function mapping variables and objects to variables and objects so that (i) it acts as identity on objects, and (ii) mapping from variables must respect types.

Given a set of atoms A, a substitution σ is call a **unifier for** A if $\sigma(A)$ is a singleton.

- fam-group: handempty(v : hand), holding(v : hand, c : conatiner)
- Action: fill-shot(s: shot, i: ingredient, \mathtt{hand}_1 , \mathtt{hand}_1 , d: dispenser) $\mathtt{pre}(a) = \{\mathtt{holding}(\mathtt{hand}_1, s), \mathtt{handempty}(\mathtt{hand}_1), \ldots\}$
- There is a unifier σ : $\sigma(v) = \operatorname{hand}_1, \sigma(c) = s$ for both $\{\operatorname{holding}(v,c), \operatorname{holding}(\operatorname{hand}_1,s)\}$ and $\{\operatorname{handempty}(v), \operatorname{handempty}(\operatorname{hand}_1)\}.$

Unifier

A **substitution** σ is a function mapping variables and objects to variables and objects so that (i) it acts as identity on objects, and (ii) mapping from variables must respect types.

Given a set of atoms A, a substitution σ is call a **unifier for** A if $\sigma(A)$ is a singleton.

- fam-group: handempty(v: hand), holding(v: hand, c: conatiner)
- Action: fill-shot(s: shot, i: ingredient, \mathtt{hand}_1 , \mathtt{hand}_1 , d: dispenser) $\mathtt{pre}(a) = \{\mathtt{holding}(\mathtt{hand}_1, s), \mathtt{handempty}(\mathtt{hand}_1), \ldots\}$
- There is a unifier σ : $\sigma(v) = \operatorname{hand}_1, \sigma(c) = s$ for both $\{\operatorname{holding}(v,c), \operatorname{holding}(\operatorname{hand}_1,s)\}$ and $\{\operatorname{handempty}(v), \operatorname{handempty}(\operatorname{hand}_1)\}.$

Unifier

A **substitution** σ is a function mapping variables and objects to variables and objects so that (i) it acts as identity on objects, and (ii) mapping from variables must respect types.

Given a set of atoms A, a substitution σ is call a **unifier for** A if $\sigma(A)$ is a singleton.

- fam-group: handempty(v: hand), holding(v: hand, c: conatiner)
- Action: fill-shot(s: shot, i: ingredient, \mathtt{hand}_1 , \mathtt{hand}_1 , d: dispenser) $\mathtt{pre}(a) = \{\mathtt{holding}(\mathtt{hand}_1, s), \mathtt{handempty}(\mathtt{hand}_1), \ldots\}$
- There is a unifier σ : $\sigma(v) = \operatorname{hand}_1, \sigma(c) = s$ for both $\{\operatorname{holding}(v,c), \operatorname{holding}(\operatorname{hand}_1,s)\}$ and $\{\operatorname{handempty}(v), \operatorname{handempty}(\operatorname{hand}_1)\}.$

Unifier

A **substitution** σ is a function mapping variables and objects to variables and objects so that (i) it acts as identity on objects, and (ii) mapping from variables must respect types.

Given a set of atoms A, a substitution σ is call a **unifier for** A if $\sigma(A)$ is a singleton.

- fam-group: handempty(v: hand), holding(v: hand, c: conatiner)
- Action: fill-shot(s: shot, i: ingredient, hand₁, hand₁, d: dispenser) pre(a) = {holding(hand₁, s), handempty(hand₁),...}
- There is a unifier σ : $\sigma(v) = \text{hand}_1, \sigma(c) = s$ for both $\{\text{holding}(v, c), \text{holding}(\text{hand}_1, s)\}$ and $\{\text{handempty}(v), \text{handempty}(\text{hand}_1)\}.$

Experimental Evaluation: Percentage of Pruned Operators

Percentage of Pruned Operators (IPC 2006–2018) (AAAI'20)

domain	#ps	unreach	+dead-end
agricola	20	0.00	0.00
barman*	74	15.42	45.95
citycar*	40	0.00	1.61
flashfill	18	0.10	0.10
floortile*	70	0.00	22.79
organic-synthesis*	7	11.44	23.11
parcprinter*	30	0.00	40.83
parking	80	3.09	3.09
scanalyzer	30	1.34	1.34
spider	15	3.47	3.47
trucks*	30	0.00	82.14
$woodworking^{\star}$	30	0.00	10.08
overall from above	444	3.52	21.52
overall	1247	1.25	7.66

Experimental Evaluation: Percentage of Pruned Operators

Percentage of Pruned Operators (IPC 2006–2018) (AAAI'20)

domain	#ps	unreach	+dead-end		
agricola	20	0.00	0.00		
barman*	74	15.42	45.95		
citycar*	40	0.00	1.61		
flashfill	18	0.10	0.10		
floortile*	70	0.00	22.79		
organic-synthesis*	7	11.44	23.11		
parcprinter*	30	0.00	40.83		
parking	80	3.09	3.09		
scanalyzer	30	1.34	1.34		
spider	15	3.47	3.47		
trucks*	30	0.00	82.14		
woodworking*	30	0.00	10.08		
overall from above	444	3.52	21.52		
overall	1247	1.25	7.66		

We need to modify the grounding algorithm.

Unifier as a Formula

Given a substitution σ and a set of variables $V \subset \mathcal{V}$, we define:

$$\Phi_{\sigma,V}^{\text{var}} = \bigwedge_{\{v,w\} \in X} (v = w), \tag{1}$$

where $X = \{\{v, w\} \subseteq V \mid v \neq w, \sigma v = \sigma w\};$

$$\Phi_{\sigma,V}^{\text{var-obj}} = \bigwedge_{v \in Y} (v = \sigma v), \tag{2}$$

where $Y = \{v \in V \mid \sigma v \in \mathcal{B}\};$

$$\Phi_{\sigma,V}^{\text{subtype}} = \bigwedge_{v \in Z} \left(\bigvee_{o \in \mathcal{D}(\tau_{var}(\sigma v))} (v = o) \right), \tag{3}$$

where $Z = \{v \in V \mid \sigma v \notin \mathcal{B}, \tau_{var}(\sigma v) \neq \tau_{var}(v)\};$ and

$$\Phi_{\sigma,V}^{\text{unifier}} = \Phi_{\sigma,V}^{\text{var}} \wedge \Phi_{\sigma,V}^{\text{var-obj}} \wedge \Phi_{\sigma,V}^{\text{subtype}}.$$
 (4)

Unifier as a Formula

Given a substitution σ and a set of variables $V \subset \mathcal{V}$, we define:

$$\Phi_{\sigma,V}^{\text{var}} = \bigwedge_{\{v,w\} \in X} (v = w), \tag{1}$$

where $X = \{\{v, w\} \subseteq V \mid v \neq w, \sigma v = \sigma w\};$

$$\Phi_{\sigma,V}^{\text{var-obj}} = \bigwedge_{v \in Y} (v = \sigma v), \tag{2}$$

where $Y = \{v \in V \mid \sigma v \in \mathcal{B}\};$

$$\Phi_{\sigma,V}^{\text{subtype}} = \bigwedge_{v \in Z} \left(\bigvee_{o \in \mathcal{D}(\tau_{var}(\sigma v))} (v = o) \right), \tag{3}$$

where $Z = \{v \in V \mid \sigma v \notin \mathcal{B}, \tau_{var}(\sigma v) \neq \tau_{var}(v)\};$ and

$$\Phi_{\sigma,V}^{\text{unifier}} = \Phi_{\sigma,V}^{\text{var}} \wedge \Phi_{\sigma,V}^{\text{var-obj}} \wedge \Phi_{\sigma,V}^{\text{subtype}}.$$
 (4)

Formula $\Phi_{\sigma,V}^{\mathrm{unifier}}$ captures unifier σ perfectly.

```
Lifted fam-group:
```

M = handempty(v : hand), holding(v : hand, c : conatiner)

Action fill-shot(s: shot, i: ingredient, h_1 : hand, h_2 : hand, d: dispenser) $pre(o) = \{handempty(h_1), holding(h_2, s), \ldots\}$

Lifted fam-group:

M = handempty(v : hand), holding(v : hand, c : conatiner)

```
Action fill-shot(s: shot, i: ingredient, h_1: hand, h_2: hand, d: dispenser) pre(o) = \{handempty(h_1), holding(h_2, s), ...\}
```

• Unifier σ_1 , $\sigma_1(v) = \sigma_1(h_1) = x$, for $\{\text{handempty}(h_1), \text{handempty}(v)\}$

Lifted fam-group:

M = handempty(v : hand), holding(v : hand, c : conatiner)

```
Action fill-shot(s: shot, i: ingredient, h_1: hand, h_2: hand, d: dispenser) pre(o) = \{handempty(h_1), holding(h_2, s), \ldots\}
```

- Unifier σ_1 , $\sigma_1(v) = \sigma_1(h_1) = x$, for $\{\text{handempty}(h_1), \text{handempty}(v)\}$
- Unifier σ_2 , $\sigma_2(x) = \sigma_2(h_2) = y$, $\sigma_2(c) = \sigma_2(s) = z$, for $\sigma_1\{\text{holding}(h_2, s), \text{holding}(v, c)\} = \{\text{holding}(h_2, s), \text{holding}(x, c)\}$

Lifted fam-group:

M = handempty(v : hand), holding(v : hand, c : conatiner)

Action fill-shot(s: shot, i: ingredient, h_1 : hand, h_2 : hand, d: dispenser) $pre(o) = \{handempty(h_1), holding(h_2, s), \ldots\}$

- Unifier σ_1 , $\sigma_1(v) = \sigma_1(h_1) = x$, for $\{\text{handempty}(h_1), \text{handempty}(v)\}$
- Unifier σ_2 , $\sigma_2(x) = \sigma_2(h_2) = y$, $\sigma_2(c) = \sigma_2(s) = z$, for $\sigma_1\{\text{holding}(h_2, s), \text{holding}(v, c)\} = \{\text{holding}(h_2, s), \text{holding}(x, c)\}$
- Therefore fill-shot (s,i,h_1,h_2,d) is recognized as unreachable with M if and only if $\Phi^{\mathrm{unifler}}_{\sigma_1,\{h_1\}} \wedge \Phi^{\mathrm{unifler}}_{\sigma_2\sigma_1,\{h_2,s\}}$ is true.

Lifted fam-group:

M = handempty(v : hand), holding(v : hand, c : conatiner)

Action fill-shot(s: shot, i: ingredient, h_1 : hand, h_2 : hand, d: dispenser) $pre(o) = \{handempty(h_1), holding(h_2, s), \ldots\}$

- Unifier σ_1 , $\sigma_1(v) = \sigma_1(h_1) = x$, for $\{\text{handempty}(h_1), \text{handempty}(v)\}$
- Unifier σ_2 , $\sigma_2(x) = \sigma_2(h_2) = y$, $\sigma_2(c) = \sigma_2(s) = z$, for $\sigma_1\{\text{holding}(h_2, s), \text{holding}(v, c)\} = \{\text{holding}(h_2, s), \text{holding}(x, c)\}$
- Therefore $\mathrm{fill}\text{-shot}(s,i,h_1,h_2,d)$ is recognized as unreachable with M if and only if $\Phi^{\mathrm{unifier}}_{\sigma_1,\{h_1\}} \wedge \Phi^{\mathrm{unifier}}_{\sigma_2\sigma_1,\{h_2,s\}}$ is true.
- Therefore, we can prune fill-shot by extending its preconditions with $\neg(\Phi_{\sigma_1,\{h_1\}}^{\text{unifier}} \land \Phi_{\sigma_2\sigma_1,\{h_2,s\}}^{\text{unifier}}) = (h_1 \neq h_2).$

- The pruning power is exactly the same as before, but we do not need to modify the grounding algorithm.
- The pruning automatically carries to other methods, because it is directly encoded in the PDDL task. For example, successor generator for lifted planning.
- There is, however, a price to pay: The resulting formulas can inccur an exponential blow-up when normalized to conjunctions.

- un: unreachability, de: dead-ends
- 56 (HTG + Optimal and satisficing IPC) domains, 3 464 tasks
- 26 domains and 1 485 tasks affected by un
- 10 domains and 544 tasks affected by de

Figure: Number of normalized actions.

Figure: Translation time in seconds.

domain	blind base de		hmax base de		hadd base de		lz-hadd base de	
airport (50) barman (74) floortile (80) parcprinter (70) trucks (30) woodworking (98)	16 4 2 14 2 12	17 4 10 18 5 13	16 4 2 20 3 0	16 4 2 20 4 0	22 4 14 49 8 0	22 4 14 57 9 0	21 6 13 49 9	21 5 16 57 11 0
others (142)	46	46	42	42	111	111	115	115
Σ (544)	96	113	87	88	208	217	213	225

Table: Number of solved tasks.

Figure: Number of dead-end states.

Figure: Number of expanded states (before the last f-layer for blind and hmax; all for hadd and lz-hadd).