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Abstract

This paper presents optimization techniques that substantially speed up the Growing Neural Gas (GNG) algorithm. The
GNG is an example of the Self-Organizing Map algorithm that is a subject of an intensive research interest in recent
years as it is used in various practical applications. However, a poor time performance on large scale problems requiring
neural networks with a high amount of nodes can be a limiting factor for further applications (e.g., cluster analysis,
classification, 3-D reconstruction) or a wider usage. We propose two optimization techniques that are aimed exclusively
on an efficient implementation of the GNG algorithm internal structure rather than on a modification of the original
algorithm. The proposed optimizations preserve all properties of the GNG algorithm and enable to use it on large scale
problems with reduced computational requirements in several orders of magnitude.
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1. Introduction

The Growing Neural Gas (GNG) [1] is one of Self-
Organizing Map (SOM) [2] algorithms for unsupervised
learning. Unsupervised learning (or sometimes called learn-
ing without teacher) is a learning method that works solely
with an input data and has no information about the de-
sired output. Input data are consecutively presented to
SOM in a form of input signals and SOM changes its topo-
logical structure to fit to the input data using its own spe-
cific mechanism – self adaptation. The GNG and other
growing neural networks (such as Growing Cell Structures
[3], Growing Grid [4], etc.) use furthermore a growing
mechanism for a gradual adaptation and a self adjusting
of its own size. The growing neural network starts in some
minimal state (e.g., with some minimal number of neurons
in the network), which is adapted to input data. Then, it
grows (increases its size) and adapts again. This cycle is
repeated until a desired resolution of the neural network
is reached.

SOM algorithms are used in various applications such
as vector quantization [5, 6, 7], cluster analysis [1, 3, 8, 9,
10], classification [11, 6], and 3-D reconstruction [12, 13,
14, 15], but a poor time performance, especially on large
scale problems, can be a limiting factor for further ap-
plications or a wider usage. Although several approaches
addressing the computational requirements have been pro-
posed [16, 17, 7], we have found out that the GNG algo-
rithm can be implemented in a more efficient way than a
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direct implementation of the original description. More-
over, based on our application of the GNG algorithm in
a real problem of 3D reconstruction [18]1, we identified
the most time consuming operations of the GNG algo-
rithm and proposed optimization techniques significantly
reducing the real required computational time. Hence, the
goal of this paper is to show how to overcome the issue
of the poor time performance and how to implement the
GNG algorithm with optimizations providing a significant
speedup.

The paper is organized as follows. First, a detailed de-
scription of the GNG algorithm is presented in the next
section to identify and understand its most time-consuming
parts. In Section 3, an overview of the related work is pre-
sented. Sections 4 and 5 are dedicated to description of
the speedup techniques proposed. The real benefit of the
techniques is evaluated in Section 6, the discussion of the
experimental results is presented in Section 7, and the con-
cluding remarks are presented in Section 8.

2. The Growing Neural Gas

A GNG network structure is a graph consisting of a
set of nodes and a set of edges connecting the nodes. Each
node has associated a weight vector corresponding to the
node’s position in the input space and an error variable in-
tended for identification of the parts of the network least
adapted to input signals. Each edge is unambiguously

1Videos with visualization of the 3-D reconstructions are avail-
able at http://www.youtube.com/watch?v=yoPcZpCPfyI, http://

www.youtube.com/watch?v=oXx3oJ8omOQ, http://www.youtube.com/
watch?v=j_t8LkAXS9Q.
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Table 1: Notation
G the set of all nodes in the network
ν, µ nodes
Nν the set of all topological neighbors of node ν
~wν the weight vector of a node ν
Eν the error of a node ν
Aν,µ the age of the edge between the nodes ν and µ
c the cycle counter
s the step counter

identified by a pair of nodes. The schema of the GNG
is depicted in Algorithm 1 with supporting functions in
Algorithm 2 and notation used through this paper can be
seen in Table 1.

The GNG works as follows. After initialization, which
places two randomly generated nodes into a network, two
main phases are alternating until a selected stopping crite-
rion is met. The first phase (“self-organizing”) is adapta-
tion, which is performed in λ steps. In each step, random
input signal is generated and the neural network adapts
itself to it: a connection between two nodes nearest to the
input signal is strengthened (or created if it does not ex-
ist), then the nearest node and all its topological neighbors
(nodes connected directly to the node by an edge) move
towards the input signal and the nearest node’s error is
increased. This helps to identify areas where nodes are
not sufficiently adapted to input signals. After that, the
aging mechanism of edges is triggered – those edges that
were not strengthened for a long time (the age of the edge
is higher than Amax) are removed from the network. In
the last step of the adaptation, an error of each node is
decreased. Using this mechanism the neural network “for-
gets” old errors and thus it can focus on the most recent
ones.

In the second phase (“growing”), a new node is created
and connected into the network. The node’s error is used
for an identification of the area where the adaptation was
least successful – the node with the largest error and its
neighbor with the largest error are found. A new node is
created at the halfway between them. The errors of those
nodes are decreased.

2.1. An alternative formulation of the GNG algorithm

We had observed that the original description of the
GNG made by Bernd Fritzke in [1] can be reformulated
without changes of the algorithm behavior, i.e., the new
algorithm works exactly in the same way as the original
one. The reformulation can be considered as “cosmetic”;
however, it allows a more straightforward application of
the proposed optimizations of the time consuming oper-
ations. Thus, the alternative formulation helps in fur-
ther explanation of the speedup techniques proposed, and
therefore, this section is dedicated for description of differ-
ences between the original and the alternative algorithm
implementation.

Algorithm 1: The original Growing Neural Gas algorithm

gng()
1 initialize the set G by two nodes with random weight vectors
2 c←− 0
3 s←− 0
4 ~ξ ←− random input signal
5 s←− s+ 1
6 ν, µ←− two nearest nodes(~ξ)
7 foreach n in Nν
8 An,ν ←− An,ν + 1

9 inc error(c, s, ν, ‖~wν − ~ξ‖2)

10 ~wν ←− ~wν + εb(~ξ − ~wν)

11 ~wn ←− ~wn + εn(~ξ − ~wn), ∀n ∈ Nν
12 create an edge between ν and µ if it does not exist
13 Aν,µ ←− 0
14 foreach a, b in all edges in map
15 if An,ν > Amax
16 delete edge connecting n and ν and all nodes w/o edges
17 if s = λ
18 gng new node(c)
19 c←− c+ 1
20 s←− 0
21 dec all error(β)
22 if stopping criterion is met
23 terminate algorithm
24 else
25 go to step 4.

Algorithm 2: Functions for the original GNG
inc error(c, s, ν, v)
1 Eν ←− Eν + v

dec error(c, ν, α)
1 Eν ←− αEν

set error(c, ν, v)
1 Eν ←− v

dec all error(β)
1 En ←− βEn, ∀n ∈ G

largest error(c)
1 q ←− arg max

n∈G
En

2 f ←− arg max
n∈Nq

En

3 return q, f

The original formulation of the GNG algorithm is de-
picted in Algorithm 1 and our formulation in Algorithm 3.
The alternative formulation of the algorithm consists of
three parts that logically belong together. The creation of
a new node is separated into dedicated function gng new node().
The function gng adapt() performs one iteration of adap-
tation to a single input signal. Finally, the main func-
tion gng() wraps the whole algorithm into one cycle within
which a stopping criterion is checked. In the original for-
mulation, the whole algorithm run in one cycle that adapts
a network to an input signal in each step and every λ steps
a new node is inserted. This is equivalent to λ adaptation
steps followed by a node insertion as it is in our formula-
tion.

The aging of edges was originally defined in two cycles.
The first one that increases ages of edges incidenting with
winning node and the second one that removes all edges
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Algorithm 3: The Growing Neural Gas algorithm
gng()
1 initialize the set G by two nodes with random weight vectors
2 c←− 0
3 while stopping criterion is not met
4 for s←− 0 to λ− 1
5 ~ξ ←− random input signal
6 gng adapt(c, s, ~ξ)
7 gng new node(c)
8 c←− c+ 1

gng adapt(c, s, ~ξ)

1 ν, µ←− two nearest nodes(~ξ)

2 inc error(c, s, ν, ‖~wν − ~ξ‖2)

3 ~wν ←− ~wν + εb(~ξ − ~wν)

4 ~wn ←− ~wn + εn(~ξ − ~wn), ∀n ∈ Nν
5 create an edge between ν and µ if it does not exist
6 Aν,µ ←− 0
7 foreach n in Nν
8 An,ν ←− An,ν + 1
9 if An,ν > Amax
10 delete edge connecting n and ν and all nodes w/o edges
11 dec all error(β)

gng new node(c)
1 q, f ←− largest error(c)

2 ~wr ←−
~wq+~wf

2
3 delete an edge connecting q and f and create two new edges

between r and q and between r and f
4 dec error(c, q, α)
5 dec error(c, f , α)

6 set error(c, r,
Eq+Ef

2
)

with age higher than threshold and thus requires iteration
over all edges in the graph. We have reformulated this
mechanism so that edges are removed in the same cycle
an increase of the edge’s age takes place (see lines 6 to 10
in gng adapt() function). It can be done so because the age
is not changed anywhere else so edges can obsolete only in
that cycle. The difference between these two formulations
is that the age of the activated edge is effectively set to
value 1 instead of 0.

More noticeable difference between the formulations is
that we have moved the decreasing of all error variables
from the end of the main algorithm cycle to the end of
the adaptation step (compare line 21 in Algorithm 1 and
line 11 in gng adapt() function in Algorithm 3). The dif-
ference is that in the original formulation the decreasing is
performed after an insertion of a new node whereas in our
formulation, the decreasing is performed before an inser-
tion. This difference can be compensated by a selection of
the parameter α so that α = βαorig.

The proposed alternative formulation has been consid-
ered in a real problem of 3D reconstruction [18] in which we
identified two most time consuming operations of the algo-
rithm. The first operation is the nearest neighbor search
performed in each adaptation step. The second operation
is the handling of node errors, i.e., the decreasing of all
errors at the end of each adaptation step and the search
for the node with the largest error when a new node is cre-
ated. All other operations, except these, can be performed

in a constant time2.
The problem of search operation has been addressed in

several GNG based approaches that are described in the
next section. Our approach for this issue is then presented
in Section 4. A speedup technique to address the error
handling is proposed in Section 5.

3. Related Work

Several contributions were made in the area of speeding
up the GNG algorithm in recent years. In these contribu-
tions, two main approaches can be identified. The first ap-
proach aims to decrease the computational burden of the
GNG using supporting structures and it can be considered
as an incremental extensions without affecting the orig-
inal underlying GNG mechanism. The second approach
requires modification of the GNG, and therefore, it is less
general as it modifies the internal mechanism of the GNG.
The representative and the most promising approaches are
briefly described in this section.

The Incremental Growing Neural Gas (IGNG) [16] al-
gorithm changes the mechanism of the creation of a new
node by introducing an “embryo” node and a “mature”
node. An “embryo” node is created whenever the pre-
sented input signal is farther from the established network
than a predefined threshold. The “embryo” node later
becomes the “mature” node after a predefined number of
excitations via input signals. An output network is formed
exclusively by the “mature” nodes. This approach deals
with the second aforementioned most time-consuming part
of the GNG by replacing it with a different mechanism
of the node creation. The IGNG does not need to com-
pute errors of the nodes because the node creation is based
solely on the distance of the input signal from the estab-
lished network. The nearest neighbor search operation is
not targeted in this work at all.

The Density Based Growing Neural Gas (DB-GNG)
[17] uses similar approach for a node creation as the IGNG.
If an input signal is farther from the established network
than a predefined threshold, a new node is created, but
only if the region, where the new node would be inserted,
has a sufficient density (i.e., the region was sufficiently
sampled by input signals so far). The DB-GNG uses a
combination of slim-tree [19], dbm-tree [20], and r-tree
[21] as a supporting structure for the nearest neighbor and
range search, which helps to speed up the algorithm. The
handling of node errors is addressed by a new mechanism
of a node creation and, in contrast to the IGNG, the near-
est neighbor search is challenged by the application of an
enhanced search structure.

2Beside the complexity analysis, a real profile of the algorithm
run shows that the nearest neighbor search constitutes about 48% of
the algorithm runtime and the search for the node with the largest
error approximately 51%; hence, almost all computational time is
spent in these two operations.
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The Growing Neural Gas with targeting (GNG-T) [7]
avoids an expensive error decreasing at the end of the
adaptation cycle by introducing a new parameter T that
represents a target average error over all nodes. At the
start of the adaptation phase, all errors are set to zero.
Errors of nodes constantly grow over all adaptation steps,
i.e., errors of all nodes are accumulated over the whole
adaptation phase without any decay. After the adapta-
tion phase, the network grows (a new node is added) if
the average error over all nodes is higher than the selected
value T , or the network shrinks (the node with the high-
est error is removed) if the average error is below T . The
nearest neighbor search is not addressed in [7].

All aforementioned approaches address the problem by
introducing a brand new algorithm to avoid a dealing with
problematic parts of the GNG. The approach presented in
this paper, on the contrary, aims directly on the original
GNG algorithm, and therefore, it preserve all the proper-
ties, including generality, just using a more sophisticated
implementations of the needed operations. Hence, this pa-
per can be considered as a tutorial how to implement the
GNG algorithm more efficiently.

4. Nearest Neighbor Search

A näıve and straightforward implementation of the near-
est neighbor search is a linear search, which is also the
slowest one because it requires iteration over all nodes
each time a search is performed. Therefore, the searching
should be based on a more sophisticated algorithm using
some supporting structure.

K-d tree [22] is a well-known structure for the nearest
neighbor search based on partitioning of a space into a
binary tree using splitting axis-aligned hyperplanes. The
time complexity of the search query for two nearest neigh-
bors can be reduced to O(n1−1/k) in the worst case, where
k is the dimensionality of the space and n is the number of
nodes in the tree. A disadvantage of this structure is the
cost of the node update that has, even in a balanced k-d
tree, complexity O(log n). Since nodes are constantly mov-
ing in the GNG, the update operation must be performed
several times each step (not to mention re-balancing of the
tree).

The vantage point tree (vp-tree) [23, 24] is another
search structure, which partitions a space on the basis of
a distance from a chosen point (vantage point). This algo-
rithm can reach O(log n) expected time for a search query
under certain circumstances but a disadvantage is, again,
update operation, which is relatively expensive. Other
search algorithms such as the r-tree [21], slim-trees [19],
or dbm-tree [20] also suffer of similar disadvantages.

Regarding the issue of the standard structures, we pro-
pose a different approach, called Uniform Grid. It ensures
a constant time for the update operation and, as indicated
by experimental results, a near constant time for the search
query.

4.1. Uniform Grid

The idea of the considered Uniform Grid (UG) search-
ing algorithm is based on speeding up the searching process
by dividing and indexing the search space. More precisely,
only the Euclidean search space (L2-norm) is considered.
So, having a point its coordinates are used as indexes to a
part of the search space where a local search for the near-
est neighbors is performed. Although in the worst case the
whole search space is examined for a single query, real com-
putational requirements are significantly lower. The pro-
posed techniques is similar to the “bucketing” method for
the point-location problem [25], which has average com-
plexity O(1), even though the worst case complexity is
O(n) for n points.

The idea of the uniform grid is relatively straightfor-
ward; however, the key issues are how to select the grid
dimensions, its resolution, and how to perform the local
search effectively to reduce the real required computational
time. On the other hand, the method is general enough to
be used not only for 2-D or 3-D cases, but also for a higher
dimensions of the searching space. Therefore, herein pre-
sented formal description of UG is for a D dimensional
space, but without lost of generality the illustrations of
the algorithm’s structures are shown only for the 2-D case
for a better readability. First, we assume the parameters
of the grid are known in advance to simplify the descrip-
tion and correctness of the searching procedure. Later, a
self adjusting procedure is introduced in Section 4.2.

Let ~g = (g1, g2, ..., gD) be the proportions of the grid,
i.e., the total number of the grid cells is n = g1g2...gD, l
be the length of a single cell side, and ~o = (o1, o2, ..., oD)
be the origin of the covered input signal space. Each cell
C of the uniform grid UG = g1×g2× . . . gD has associated
list of nodes whose weight vectors are encapsulated by the
cell. Then, the coordinates ~pν = (p1, p2, ..., pD) of the
cell C within the grid where a node ν is located can be
computed using the node’s weight ~wν = (w1, w2, ..., wD)
as

~pν =

⌊
~wν − ~o
l

⌋
, (1)

where b·c denote the floor function.

~o 0 1 2 3 4

0

1

2

3

g
2
=

4

g1 = 5

b

~p = (1, 2)

l
l

Figure 1: An example of 2-D uniform grid.
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(a) step 1, boundary distance b,
initial cell C is searched

0 1 2 3 4

0

1
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4

b

b+ l

(b) step 2, b+ l, cells within the
radius 1 from C are searched

0 1 2 3 4

0

1

2

3

4

b

b+ 2l

(c) step 3, b+2l, cells within the
radius 2 from C are searched

Figure 2: An example of searching in 2-D grid: (a) In the first step
only one cell is searched, (b) then all cells around it (in radius 1); (c)
then all cells in radius 2, etc. The cross represents the input signal,
red circle the boundary distance b, and yellow cells are the cells that
are currently searched.

It is obvious from Eq. (1) that for a givenD the position
of ν in the grid can be computed in a constant time; hence,
a node can be inserted into the grid in a constant time as
well as the node update, which can be made as consecutive
remove and insert operations. An example of 2-D uniform
grid is shown in Fig. 1.

A procedure for finding the closest nodes is a bit more
complicated as it has to find up two nearest neighbors.
First, a corresponding cell C is determined for an input
signal ~ξ = (ξ1, ξ2, ..., ξD) using Eq. (1). The closest node
can be in the same cell C; however, due to the rounding of
the node indexes, it may also be in the next cell (or other
cells because its distance from the node can be longer than
l). Therefore the minimal orthogonal distance b to the C’s
border is computed according to Eq. (2).

b = min
i=1...D

min (|ξi − oi − pil|, |ξi − oi − (pi + 1)l|) (2)

Then, an iterative procedure is performed to find two near-
est nodes. The procedure starts with the cell C and uses
the distance b to ensure that there are not closer nodes in
next cells. If C contains two nodes that are in less dis-
tance than b, then other nodes can be only within longer
distance. If such nodes are not found, the distance b is

increased by the length of the cell side l:

b′ = b+ l (3)

and cells within the radius 1 from C are searched. This
procedure is repeated until the nearest nodes are found,
or the whole UG is searched. Each time of the repeat,
the cells within a longer radius (increased about 1) are
considered, and therefore, each cell of the grid is examined
once (at maximum), see example of searching sequence
depicted in Fig. 2.
Discussion – The procedure finds two nearest nodes (if
exist) and in the worst case the complexity of the search
query is O(n). Thus, the proposed procedure is not worse
than a linear search. However, the real required computa-
tional time of the search query depends on the occupancy
of the cells in the grid. If the cells are sparsely occupied,
i.e., many cells are empty and the rest of the cells con-
tain a small amount of nodes, then a large number of cells
must be searched and the search query is slow because a
large part of the grid has to be examined. On the other
hand, if the cells are occupied too much densely, i.e., each
cell contains a large amount of nodes, only a small part
of the grid is searched but a large amount of nodes must
be checked within a single cell, which also leads to the
linear search algorithm. An appropriate balance between
these two extremes is required for the best performance of
the uniform grid, but unfortunately it depends on the grid
parameters such as the proportions (~g) and the cell side
length (l), which must be known in advance. It can also be
hard to find the ideal parameters because the neural net-
work gradually grows; hence, the occupancy of the grid is
changing in time. Therefore, we addressed these issues by
a dynamic version of the uniform grid, which is described
in the next section.

4.2. Growing Uniform Grid

A proper selection of the uniform grid parameters can
be avoided using a mechanism of self adjusting to a node
distribution. The idea of the proposed growing uniform
grid is based on observations of the performance of the
above described uniform grid. The uniform grid is a static
structure that does not scale well with the growing num-
ber of nodes in the network. If the proportions of the grid
is chosen to work fast on a small amount of nodes then
the search query will be slow when the number of nodes in
the network cross certain threshold. On the other hand, if
the proportions are chosen to better fit a large amount of
nodes, the algorithm will be slow at the beginning when
the network is sparse (and possibly will slow again when
the network grows over certain limit). Therefore, the dy-
namic version of the algorithm needs a mechanism to ad-
just itself to the current size of the network.

Let hd denote a density of the uniform grid, i.e., an
average number of nodes per cell. Let ht denote an allowed
maximal density and let hρ denote an expansion factor,
i.e., the ratio of the number of nodes in a new network

5



and the number of nodes in the old network. The growing
uniform grid starts with a single cell encapsulating an axis
aligned bounding box of the input signals. Once hd > ht a
brand new uniform grid is built consisting of hρ-times more
cells than the current grid (proportions and the cell side
length are computed appropriately). After that, all nodes
are inserted into the new grid. An example of the growing
grid is depicted in Fig. 3. The rebuilt of the uniform grid is
made in a linear time because the insertion of a single node
can be performed in a constant time. Thus, the complexity
of the growing uniform grid is still O(n) as of the original
uniform grid, but the growing uniform grid can scale better
to the growing network if appropriate values of parameters
are chosen.

0 1

0

1

b

~p = (0, 1)

0 1 2

0

1

2

b

~p = (1, 1)

0 1 2 3

0

1

2

3

b

~p = (1, 2)

Figure 3: A growing of the uniform grid (from left to right) covering
the same space and containing the same node.

The selection of the appropriate values of ht and hρ
can be still a somehow difficult task because the values,
obviously, depend on the distribution of the input signals.
Based on experimental results, we estimated the values of
ht and hρ to 0.1 and 1.5, respectively. These values are
used in all experiments described in Section 6.

Note that the decision on rebuilding of the grid can be
based on a different measure than the average number of
nodes per cell. It can be the median, mode, or any other
measure. We have chosen the average measure because
it is fast and easy to compute and it was able to provide
sufficient performance in the experimental evaluation.

5. Error Handling

The second most time consuming part of the GNG al-
gorithm is the handling of node errors, above all, the de-
creasing of all errors at the end of the adaptation step
(dec all error function) and the finding of a node with
the largest error at the beginning of the “growing” phase
(largest error function). A näıve implementation of both
operations examine all nodes in the network, and there-
fore, its complexity is linear. Nevertheless, we propose a
mechanism for each operation that significantly reduces its
required computational time. The mechanism is based on
observations how the error values evolve during the adap-
tation and growing phases.

5.1. Adaptation Phase

The GNG algorithm is performed in cycles where the
adaptation and the growing phases are alternating. The

cycles are counted by the counter denoted by c. The adap-
tation phase is performed in λ steps, which are counted by
the counter denoted by s counting from 0 to λ − 1 (see
Algorithm 3).

The dec all error function with a linear complexity
represents the most expensive error handling of the adap-
tation phase. Therefore, we focused on a more sophisti-
cated implementation to reduce the computational bur-
den. To do so, we remove the function from the algorithm
and examine the algorithm in order to propose a mecha-
nism that will replace it.

During the adaptation phase, a node error is changed
only in the inc error function, which basically adds only a
given value to the error variable. Let cj denote the current
cycle of the algorithm. Let Eν,c0 denote the value of the
error of the node ν at the end of the cycle c0 (c0 ≤ cj).
Following cases for the error can happen.

If the error is not increased whatsoever in the current
cycle (cj), the error at the end of the cycle has value

Eν,cj = β(cj−c0)λEν,c0 (4)

because the error is decreased λ-times in each adaptation
phase between c0 and cj (including cj and excluding c0).

If the error is increased exactly once by the value v1
in the step s1 (of cycle cj), the value of the error can be
computed step by step as follows.

1) According to Eq. (4), the error at the end of the
previous cycle has value

Eν,cj−1 = β[(cj−1)−c0]λEν,c0 . (5)

2) The error is decreased s1-times to have the following
value in the step s1:

E
′

ν,cj = βs1Eν,cj−1. (6)

3) The error is increased by v1:

E
′′

ν,cj = E
′

ν,cj + v1. (7)

4) Finally, the error is decreased (λ− s1)-times to get
the actual value at the end of the cycle cj :

Eν,cj = βλ−s1E
′′

ν,cj

= βλ−s1(βs1β[(cj−1)−c0]λEν,c0 + v1)

= β(cj−c0)λEν,c0 + βλ−s1v1. (8)

Similarly, if the error is increased two times by v1, v2
in steps s1, s2 (s1 < s2), respectively, its value is

Eν,cj = βλ−s2 [βs2−s1(βs1β[(cj−1)−c0]λEν,c0 + v1) + v2]

= β(cj−c0)λEν,c0 + βλ−s1v1 + βλ−s2v2. (9)

This can be generalized for n changes v1, v2, ..., vn in steps
s1, s2, ..., sn (s1 < s2 < ... < sn):

Eν,cj = β(cj−c0)λEν,c0 +

n∑
i=1

βλ−sivi. (10)
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Algorithm 4: Functions of the proposed improvements of
the GNG. Note that all powers of β can be pre-computed into
an array and the expensive processor operation can be avoided.

inc error*(c, s, ν, v)
1 fix error(c, ν)
2 Eν ←− βλ−sEν + v
3 update the node ν in the heap

dec error*(c, ν, α)
1 fix error(c, ν)
2 Eν ←− αEν
3 update the node ν in the heap

set error*(c, ν, v)
1 Eν ←− v
2 Cν ←− c
3 insert the node ν into the heap

dec all error*(β)
1 nop()

largest error*(c)
1 q ←− top node from the heap
2 f ←− arg max

n∈Nq
En

3 return q, f

fix error(c, ν)
1 Eν ←− βλ(c−Cν)Eν
2 Cν ←− c

As can be seen, decreasing of all error variables is not nec-
essary if each node keeps track of the cycle in which its er-
ror variable has been changed last time. The actual error,
including its periodical decreasing, can be easily computed
by Eq. (10) at any time.

Notice that Eq. (10) can be divided into two parts.
The first part, β(cj−c0)λE0, deals with the correction of the
error due to its periodical decreasing. Let Cν denote the
cycle counter of the node ν. A new function fix error fixes
the error variable of the node according to the difference
between the value of the current cycle c and the node’s
cycle counter Cν , which also corresponds to the last call
of fix error.

The second part of Eq. (10), the sum term, represents
the actual increasing of the node’s error (inc error func-
tion). Notice the simple fact that each increasing of an
error does not depend on any of the previous error addi-
tions. It depends entirely on a value of the step counter s
(β and λ are constant parameters). This means that once
the error is fixed to correspond with the current cycle,
the change can be applied to the error regardless of any
previous changes. This observation leads to the replace-
ment of the original function inc error by a new function
inc error*, which just fixes the error and increases the er-
ror (the third line of inc error* is explained in the next
section). Similarly functions dec error and set error can
be replaced by functions dec error* and set error*, re-
spectively. All new functions are depicted in Algorithm 4.

5.2. Growing Phase

In the “growing” phase, the most time consuming part
is the searching for the node with the largest error. An
intuitive approach to speed up this operation would prob-
ably be to keep track of the node with the largest error
and update it every time an error is changed. However,
once this node is taken and its value is decreased, all nodes
must be checked again to find the largest one and start the
tracking again. This leads to the algorithm with a linear
complexity, which we would like to avoid.

A priority queue can be used to store all nodes pro-
viding the node with the largest error in a constant time.
The update operations for the heap-based priority queues
have usually O(log n) complexity, where n is the number
of the nodes on the heap. However, standard approaches
of updates cannot be used because the actual values of er-
ror variables are unknown. Therefore, we propose the so
called lazy heap to efficiently deal with the issue.

The lazy heap can be based on virtually any heap struc-
ture (the pairing heap [26] is used in our implementation)
that have these four operations:

• insert - inserts a new node into the heap,

• remove - removes a node from the heap,

• update - updates a node’s position in the heap when
the error variable is changed,

• top - returns the node with the largest error (the
node from the top of the heap).

Beside the selected underlying heap structure, the lazy
heap utilizes an extra list L of nodes that are waiting to
be inserted in the heap.

The insert operation does not insert the node into the
heap but instead postpone this operation by inserting the
node into the list L. The update operation works simi-
larly. Instead of updating node’s position in the heap, it
completely removes the node from the heap and adds it
to L. Finally, the most of the work remains for the top
operation, which is why we call the structure lazy heap:
all work is lazily postponed to the last moment when it is
required.

The top operation works in two steps. In the first step,
all nodes added so far into the list L are removed from the
list and inserted into the underlying heap (using its original
mechanism). In the second step, the node µ from the top
of the heap is taken and its cycle counter Cµ is checked if
it equals to the current value of the global cycle counter
c. If it does, the node has the largest error; thus, it is the
correct return value of the top operation. If the counters
differ, fix error is called for the node µ, its position in
the heap is updated, and the top operation is called again.
The proof of the correctness of this procedure is following.

Before we start constructing the proof a heap struc-
ture must be defined. We define a heap specifically for
the purpose of containing nodes ordered by their errors,
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but sufficiently generally to pose minimal restrictions on
the selection of the underlying heap (priority queue). The
proof itself starts with two lemmas that lead to Theorem 3
providing the proof by contradiction of the correctness of
the top operation.

Definition 1. A heap is a structure that have exactly one
top node µ that satisfy the property

Eµ,Cµ ≥ Eν,Cν (11)

for each node ν in the heap.

Lemma 1. If Cν ≤ c then the property Eν,c ≤ Eν,Cν holds
for each node ν in the heap.

Proof. According to Eq. (4), the error in the cycle c
equals to

Eν,c = β(c−Cν)λEν,Cν (12)

and since β < 1, the error in the cycle c must be smaller
than (or equal to) the error of the same node in the cycle
Cν .

Lemma 2. The top operation ensures that the node µ on
the top of the heap will eventually satisfy Cµ = c.

Proof. During the top operation, if Cµ 6= c then the error
is fixed and the node is inserted back into the heap with
Cµ = c. Since there is a finite number of nodes in the heap,
a node with Cµ = c will eventually emerge on the top of
the heap.

Theorem 3. Let µ denote the top node of the heap. If
Cµ = c and Cν ≤ c then property Eµ,c ≥ Eν,c holds for all
nodes ν in the heap. Hence, the node µ is the node with
the largest error.

Proof. According to Definition 1 Eµ,Cµ ≥ Eν,Cν must
hold, which for Cµ = c leads to Eµ,c ≥ Eν,Cν . Now the
proof by contradiction is constructed. Let assume that

Eµ,c < Eν,c and Eµ,c ≥ Eν,Cν . (13)

This is equivalent to

Eν,Cν ≤ Eµ,c < Eν,c, (14)

which implies

Eν,Cν < Eν,c. (15)

Eq. (15) is a contradiction with Lemma 1. Theorem 3 with
conjunction with Lemma 2 proves that the aforementioned
procedure provides the node with the largest error.

6. Experimental Results

The real benefit of the proposed optimizations has been
evaluated in selected real problems to obtain a representa-
tive indicators of the improvements. The GNG has been
tested with each optimization separately and with both
optimizations combined in order to evaluate the impact
of both optimizations proposed. The optimization of the
nearest neighbor search has been compared with the vp-
tree [23, 24] to show a performance of the well-known tree-
based algorithm as well. The GNG has been tested in six
variants:

• Orig – the original algorithm with the linear nearest
neighbor (NN) search and without any modifications
in the error handling,

• VP – the vp-tree used for the NN search and no error
handling optimizations,

• UG – the uniform grid as proposed in Section 4 for
the NN search and no error handling optimizations,

• Err – the linear NN search and error handling opti-
mizations as proposed in Section 5,

• VP+Err - the vp-tree for the NN search and error
handling optimized,

• UG+Err - the uniform grid for the NN search and
error handling optimized – both of the proposed op-
timizations together.

Table 2: GNG parameters used in experiments

εb εn λ β α Amax ht hρ

0,05 0,0006 200 0,9995 0,95 200 0.1 1.5

(a) circle (b) map

Figure 4: The GNG adapted to 2-D distributions.

Beside the GNG, the Growing Self-Reconstruction Maps
(GSRM) [12] algorithm has also been evaluated because it
is a nontrivial GNG based algorithm with an interesting
application. The GSRM is an algorithm designed for a
surface reconstruction of 3-D objects from a set of points.
It adopts creation of nodes and edges from the GNG. In
addition, it incorporates also a face creation between a
triplet of edges. The resulting (reconstructed) surface is

8



then formed by a set of faces. The GSRM is evaluated
using the same six variants as the GNG.

The evaluation of the tested GNG based algorithms
has been performed using the following test cases: two 2-D
distributions named circle (Fig. 4(a)) and map (Fig. 4(b)),
and two 3-D distributions taken from Stanford repository [27],
called bunny (Fig. 5(a)) and asian-dragon (Fig. 5(b)). The
GSRM algorithm has been evaluated using the same bunny
and asian-dragon datasets from Stanford repository.

(a) bunny (b) asian-dragon

Figure 5: The GNG adapted to 3-D distributions.

All algorithms have been implemented and evaluated
within the same computational environment, i.e., a C im-
plementation running at a GNU/Linux workstation with
Intel Core i7 2.8 GHz processor. Therefore, the real ben-
efits of the proposed optimizations can be directly com-
pared using the real required computational time. In all
tests performed, the stopping condition is the desired num-
ber of the nodes in the network. All parameters used are
presented in Table 2.

Tables 3-6 show required computational times of the
GNG algorithm computed as the median from five runs.
The course of the time cost of the GNG depending on the
number of nodes in the network is shown in Fig. 8 for
the circle and in Fig. 9 for the asian-dragon distributions.
Required computational times of the GSRM algorithm in
the surface reconstruction of the bunny and asian-dragon
datasets are presented in Tables 7 and 8, respectively, also
computed as the median from five runs. The course of
the time cost of 3-D reconstruction of the asian-dragon
dataset depending on the number of nodes in the map up
to 500,000 nodes is shown in Fig. 10. The result of the
3-D reconstruction with 50,000 nodes of the asian-dragon
dataset is shown in Fig. 6.

The results indicate that the time cost of the variants
Orig, VP, UG and Err grow exponentially with an in-
creasing number of nodes in the network. The optimized
variant with the vp-tree used for the NN search (VP) is
faster than the original algorithm in all test cases but the
efficiency of the optimization decreases with an increasing
number of nodes. The reason is that with an increasing
number of nodes the depth of the tree also increases, and
the search query (together with the update operations)
becomes more expensive. On the other hand, the variant
with the uniform grid used for the NN search (UG) is in

Figure 6: Asian-dragon reconstructed with 50,000 nodes by GSRM.

most cases almost 2 times faster than the Orig variant,
more than 1.2 times faster than the VP variant, and the
rate holds relatively stable with an increasing number of
nodes in the network.

The variant with the optimized error handling (Err)
is faster than the UG variant and the time cost increases
more slowly. These results indicate that the error handling
is the most time consuming part of the algorithm, even
more than the nearest neighbor search.

Both the VP+Err and UG+Err variants speed up the
original algorithms by several orders of magnitude. It can
also be seen that the time cost grows approximately lin-
early in contrast to the exponential growth in other cases.
Moreover, Fig. 10 indicates that the linear characteristics
holds even for networks counting hundreds of thousands
nodes. The UG+Err variant implementing both improve-

(a) 5000 nodes (b) 20,000 nodes

(c) 50,000 nodes (d) 300,000 nodes

Figure 7: Detail of reconstructed asian-dragon in different resolu-
tions.
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Table 3: Runtime of the GNG for the circle distribution
circle 1000 5000 10,000 25,000 50,000
Orig 1.27 46.35 190.41 1258.81 8294.14
VP 0.89 30.39 121.27 805.61 7018.69
UG 0.53 23.95 99.00 653.95 4813.62
Err 0.86 23.35 93.01 590.77 3418.27
VP+Err 0.47 3.32 7.42 21.19 48.04
UG+Err 0.12 0.77 1.68 4.59 10.67

Table 4: Runtime of the GNG for the map distribution

map 1000 5000 10,000 25,000 50,000
Orig 1.31 46.13 189.98 1228.15 7925.99
VP 0.94 30.72 121.73 804.20 6893.67
UG 0.52 23.84 98.98 657.47 4569.74
Err 0.89 23.49 94.26 602.91 3341.88
VP+Err 0.48 3.31 7.39 21.06 47.31
UG+Err 0.12 0.78 1.67 4.60 10.80

Table 5: Runtime of the GNG for the bunny distribution

bunny 1000 5000 10,000 25,000 50,000
Orig 1.42 49.62 202.04 1350.22 8628.54
VP 1.11 32.48 126.28 870.10 7226.30
UG 0.73 26.05 105.54 720.18 5136.57
Err 1.00 25.51 100.67 640.28 3466.06
VP+Err 0.63 3.87 8.41 23.16 50.58
UG+Err 0.32 1.44 2.92 7.79 17.87

ments proposed outperforms the variant with the vp-tree.
The proposed techniques make the GNG (and GSRM) al-
gorithm more than twice as faster as the VP+Err variant
in all test cases.

7. Discussion

The exponential growth of the original GNG algorithm
could prevent it from a deployment on problems, where a
large size of the neural network is required. An exam-
ple of the required high number of nodes is clearly visible
in the case of the surface reconstruction using the GSRM
algorithm. For the asian-dragon object, a reasonable res-
olution (where details of the object are distinguishable)
starts with a relatively high number of nodes in the net-
work (about 50,000) and with increasing size of the net-
work a more precise reconstruction can be obtained (see
Fig. 7). The original GSRM algorithm needs hours to re-
construct the object in a reasonable resolution and even
days if a more precise reconstruction (e.g., with 300,000
nodes or more) is required, which practically disqualify the
neural network algorithm from this sort of application.

Using the proposed speedup techniques, the reconstru-
cted asian-dragon object with 50,000 nodes is provided
within approximately 27 seconds, in contrast to more than
three and half hours when the original algorithm is used.
A resolution of 300,000 nodes is reached by the optimized

Table 6: Runtime of the GNG for the asian-dragon distribution

a-dragon 1000 5000 10,000 25,000 50,000
Orig 1.40 61.93 292.44 1986.41 10,346.77
VP 1.04 46.98 210.90 1478.93 8,828.01
UG 0.68 37.46 185.47 1341.74 7,079.62
Err 0.98 25.04 99.23 626.36 3,374.74
VP+Err 0.62 3.90 8.49 23.50 51.81
UG+Err 0.26 1.43 3.05 8.39 19.30

Table 7: Runtime of the GSRM for the bunny dataset

3d-bunny 1000 5000 10,000 25,000 50,000
Orig 2.18 63.49 260.27 1837.71 13,446.30
VP 1.14 33.90 133.93 988.98 8,218.67
UG 0.81 29.03 118.56 829.09 6,591.20
Err 1.34 36.26 147.43 985.64 6,353.51
VP+Err 0.70 4.38 9.44 26.11 58.39
UG+Err 0.40 1.94 3.96 10.64 24.59

Table 8: Runtime of the GSRM for the asian-dragon dataset

3d-dragon 1000 5000 10,000 25,000 50,000
Orig 1.78 71.74 338.51 2314.30 14,817.25
VP 1.18 49.57 215.02 1430.08 9,610.59
UG 0.77 40.43 202.60 1359.61 8,149.79
Err 1.34 35.68 144.56 1006.85 6,012.06
VP+Err 0.69 4.37 9.50 26.75 60.02
UG+Err 0.33 1.89 4.02 11.32 27.04

GSRM within 7 minutes and resolution of 500,000 nodes
within 14 minutes. The original GSRM was not able to
reconstruct the object with 300,000 nodes even after 12
hours when we stopped the unfinished reconstruction con-
taining 71,000 nodes. The results indicate that the pro-
posed optimizations make the GNG algorithm usable for
large scale problems.

The error handling optimization (Err variant) is the
fastest particular optimization from all aforementioned tech-
niques. Moreover, it modifies solely the internal mecha-
nism of the error handling and does not depend on any
externalities (such as chosen distance metric in the case of
the NN search). Therefore, it is highly recommended to
use this optimization even in cases where it is not possible
to use any optimization of the NN search.

The combination of both proposed optimizations pro-
vide substantial speedup in all test cases and outperform
all other tested variants of the algorithm. So, if the near-
est neighbor search is performed in Euclidean space (with
L2 norm), it is recommended to integrate not only the er-
ror handling optimization, but also the proposed growing
uniform grid.

The proposed optimization techniques are general and
can be used for a high dimensional input space, where they
can also provide a speedup. Our preliminary evaluations of
the proposed techniques on high dimensional data indicate
that the uniform grid does not provide a real benefit be-
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Figure 8: Required computational time of the variants of the GNG
algorithm for the circle distribution.
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Figure 9: Required computational time of the variants of the GNG
algorithm for the bunny distribution.

cause a number of cells that must be searched grows expo-
nentially; thus, it degrades the performance of the uniform
grid to the level of the linear search, and therefore, some
tree like structure (e.g., vp-tree) should be rather used. On
the other hand, the preliminary results indicate that the
proposed error handling technique provides a substantial
speedup (in several orders of magnitude) even on a high di-
mensional data. Although the real speedup improvements
on high dimensional data can vary on the particular prob-
lems and representative performance indicators should be
based on a large dataset of real problems, the results are
very promising, and therefore, the presented optimization
techniques (especially the proposed error handling) should
be considered whenever the real time performance is an is-
sue.

8. Conclusion

Two speedup techniques of the Growing Neural Gas
(GNG) algorithm have been proposed. The first technique
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Figure 10: Required computational time of the variants of the GSRM
algorithm for the 3D reconstruction of asian-dragon up to 500,000
nodes.

enhances the nearest neighbor search using a space par-
titioning by a grid of rectangular cells, which enables to
update nodes in a constant time and reduces a search time
due to reduction of the size of the space searched. The sec-
ond technique speeds up the handling of node errors using
the lazy evaluation approach.

It has been proven that the techniques do not change
whatsoever the effective behavior of the algorithm. The
experimental results indicate that both techniques sepa-
rately can provide a considerable speedup. If an optimiza-
tion technique for the nearest neighbor search (the pro-
posed UG or vp-tree) is combined with the proposed error
handling optimization then the GNG and GNG based al-
gorithms run faster by several orders of magnitude and the
time cost grows approximately linearly with an increas-
ing number of nodes in the network. A huge performance
boost has been demonstrated for 2D and 3D problems;
however, the presented techniques are general and works
also for high dimensional input spaces, where a similar
speedup is expected. A detailed performance evaluation
of high dimensional problems is a subject of our further
work.
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Appendix A. Software

The source code of the optimized GNG and GSRM
algorithms is part of the fermat library [28] publicly avail-
able under 3-clause BSD license.
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