Operator Mutexes and Symmetries for Simplifying Planning Tasks

${\sf Daniel \ Fi} \check{\sf ser}^1 \quad \acute{\sf Alvaro \ Torralba}^2 \quad {\sf Alexander \ Shleyfman}^3$

¹Czech Technical University in Prague, *danfis@danfis.cz*

²Saarland University, torralba@cs.uni-saarland.de

³Technion – Israel Institute of Technology, alesh@campus.technion.ac.il

January 28, 2019

STRIPS

A planning task in STRIPS is a tuple $\Pi = \langle \mathcal{F}, \mathcal{O}, I, G \rangle$ where:

- \mathcal{F} is a finite set of **facts**;
- $I \subseteq \mathcal{F}$ is an initial state; $G \subseteq \mathcal{F}$ is a goal specification;
- \mathcal{O} is a set of **operators** o specified by $pre(o), del(o), add(o) \subseteq \mathcal{F}$, and $c(o) \in \mathbb{R}_0^+$;

Redundancy

Redundant Set

A set of operators O is **redundant** if remove O from the planning task preserves at least one (strongly optimal) plan.

- Given two redundant sets O_1 and O_2 , $O_1 \cup O_2$ is not necessarily redundant.
- If O_1 is redundant in Π and O_2 is redundant in $\Pi \setminus O_1$, then $O_1 \cup O_2$ is redundant in Π . Therefore, we can apply fixpoint computation.

Redundancy

Redundant Set

A set of operators O is **redundant** if remove O from the planning task preserves at least one (strongly optimal) plan.

- Given two redundant sets O_1 and O_2 , $O_1 \cup O_2$ is not necessarily redundant.
- If O_1 is redundant in Π and O_2 is redundant in $\Pi \setminus O_1$, then $O_1 \cup O_2$ is redundant in Π . Therefore, we can apply fixpoint computation.

Redundancy

Redundant Set

A set of operators O is **redundant** if remove O from the planning task preserves at least one (strongly optimal) plan.

- Given two redundant sets O_1 and O_2 , $O_1 \cup O_2$ is not necessarily redundant.
- If O_1 is redundant in Π and O_2 is redundant in $\Pi \setminus O_1$, then $O_1 \cup O_2$ is redundant in Π . Therefore, we can apply fixpoint computation.

Operator Mutex

A strong operator mutex (op-mutex) O is a nonempty set of operators s.t. $O \not\subseteq \pi$ for every strongly optimal plan π .

- Mutex: a set of facts M s.t. $M \not\subseteq s$ for every reachable state s.
- What is a mutex with respect to reachable states that is a strong operator mutex with respect to strongly optimal plans.
- Definition with respect to strongly optimal plans is more general than with respect to all plans.

Operator Mutex

A strong operator mutex (op-mutex) O is a nonempty set of operators s.t. $O \not\subseteq \pi$ for every strongly optimal plan π .

- In every op-mutex O ⊆ O, there is an operator o ∈ O such that {o} is redundant.
- Given $O_1, O_2 \subseteq \mathcal{O}, O_1 \neq O_2$, if $\{o_1, o_2\}$ is an op-mutex for every $o_1 \in O_1$ and every $o_2 \in O_2$, then O_1 or O_2 is redundant.
- We proposed four different methods for inference of op-mutexes.

Inference from Abstract State Space

Given an abstract state space Θ_{Π}^{α} and operators $o_1, o_2 \in \mathcal{O}$, $o_1 \neq o_2$, if o_2 is not reachable after o_1 and o_1 is not reachable after o_2 , then $\{o_1, o_2\}$ is an op-mutex.

Inference from Abstract State Space

Given an abstract state space Θ_{Π}^{α} and operators $o_1, o_2 \in \mathcal{O}$, $o_1 \neq o_2$, if o_2 is not reachable after o_1 and o_1 is not reachable after o_2 , then $\{o_1, o_2\}$ is an op-mutex.

- Experimentally evaluated with projections to single fact-alternating mutex groups.
- Op-mutexes were found in 32 out of 83 domains from IPC 2006-2018.
- However, the method can be used with any abstraction (Pattern Databases, Merge-and-Shrink, Cartesian Abstractions).

Inference with Op-Fact Compilation

Given the planning task Π , create a new auxiliary fact f_o for each operator o, and add f_o to o's add effect.

If $\{f_{o_1}, \ldots, f_{o_n}\}$ is a mutex in op-fact compilation, then $\{o_1, \ldots, o_n\}$ is an op-mutex in Π .

Inference with Op-Fact Compilation

Given the planning task Π , create a new auxiliary fact f_o for each operator o, and add f_o to o's add effect.

If $\{f_{o_1}, \ldots, f_{o_n}\}$ is a mutex in op-fact compilation, then $\{o_1, \ldots, o_n\}$ is an op-mutex in Π .

Inference with Op-Fact Compilation

Given the planning task Π , create a new auxiliary fact f_o for each operator o, and add f_o to o's add effect. If $\{f_{o_1}, \ldots, f_{o_n}\}$ is a mutex in op-fact compilation, then $\{o_1, \ldots, o_n\}$ is an op-mutex in Π .

- Any method for inference of mutexes can be used, including h^m family of heuristics.
- Experimentally evaluated with h².
- Op-mutexes were found in 34 out of 83 domains from IPC 2006–2018.
- Two more methods for inference of op-mutexes can be found in the paper.

Definition (Symmetry)

A plan preserving symmetry of the transition system $\Theta = \langle S, L, T, s_I, S_{\star} \rangle$ is a permutation σ of $S \cup L$ mapping states to states and labels to labels s. t.

•
$$s \xrightarrow{o} s' \in T$$
 iff $\sigma(s) \xrightarrow{\sigma(o)} \sigma(s') \in T$,

•
$$c(o) = c(\sigma(o))$$
,

• $s \in S_{\star}$ iff $\sigma(s) \in S_{\star}$, and

•
$$\sigma(s_I) = s_I$$

for all states $s, s' \in S$ and all labels $o \in L$.

For every plan π it holds that $\sigma(\pi)$ is also a plan, moreover $|\pi| = |\sigma(\pi)|$ and $c(\pi) = c(\sigma(\pi))$.

Pruning with Operator Mutexes and Symmetries

Proving Redundancy

- If $\{o_1, o_2\}$ is an op-mutex and there exists a symmetry $\sigma(o_1) = o_2$, then both $\{o_1\}$ and $\{o_2\}$ are redundant.
- And similarly for two sets of operators O_1 and O_2 : If $\{o_1, o_2\}$ is an op-mutex for every $o_1 \in O_1$ and every $o_2 \in O_2$, and there exists symmetry $\sigma(O_1) = O_2$, then both O_1 and O_2 are redundant.

Pruning with Operator Mutexes and Symmetries

Proving Redundancy

- If $\{o_1, o_2\}$ is an op-mutex and there exists a symmetry $\sigma(o_1) = o_2$, then both $\{o_1\}$ and $\{o_2\}$ are redundant.
- And similarly for two sets of operators O_1 and O_2 : If $\{o_1, o_2\}$ is an op-mutex for every $o_1 \in O_1$ and every $o_2 \in O_2$, and there exists symmetry $\sigma(O_1) = O_2$, then both O_1 and O_2 are redundant.

Proving Redundancy

- If $\{o_1, o_2\}$ is an op-mutex and there exists a symmetry $\sigma(o_1) = o_2$, then both $\{o_1\}$ and $\{o_2\}$ are redundant.
- And similarly for two sets of operators O_1 and O_2 : If $\{o_1, o_2\}$ is an op-mutex for every $o_1 \in O_1$ and every $o_2 \in O_2$, and there exists symmetry $\sigma(O_1) = O_2$, then both O_1 and O_2 are redundant.
- Each pruning step destroys at least one symmetry, therefore the number of steps is limited by the number of symmetries.
- Finding a complete bipartite subgraph is NP-hard.
- Therefore, we use a greedy approach for inference of redundant sets: We choose the largest set of operators that destroys the least number of symmetries in a hope that we will be able to do more steps.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Pruning Results

domain	baseline			h ² +de with	
	h^2+de	fam	$\Pi^2_{\rm op}$	fam	Π^2_{op}
barman11	52.11	4.71	24.48	+3.60	+3.60
barman14	53.43	4.94	25.28	+4.01	+4.01
caldera18	39.34	0.73	13.25	0.00	+1.45
cavediving14	0.66	1.15	1.44	+1.15	+1.15
childsnack14	0.00	39.58	39.58	+39.58	+39.58
hiking14	0.00	0.07	0.07	+0.07	+0.07
parcprinter08	70.68	28.61	28.61	0.00	0.00
parcprinter11	70.15	25.75	25.75	0.00	0.00
pathways06	3.94	2.22	2.26	+3.73	+3.73
pegsol08	13.57	0.00	1.92	+0.36	+0.36
pegsol11	9.53	1.08	3.51	+0.20	+0.20
pipesworld06	11.46	0.04	4.04	+0.04	+0.04
scanalyzer08	3.19	0.00	2.10	0.00	0.00
scanalyzer11	3.17	0.00	2.12	0.00	0.00
sokoban08	0.24	1.54	1.71	+1.54	+1.60
sokoban11	0.35	1.86	2.12	+1.86	+1.95
tpp06	37.96	1.49	19.97	+1.79	+1.79
trucks06	75.02	0.00	0.71	+7.87	+7.87
woodworking08	53.47	2.83	10.79	+1.60	+1.60
woodworking11	53.72	2.73	10.17	+1.83	+1.83
overall	53.72	7.99	13.73	+4.29	+4.39

Table: Average percentage of removed operators with 15 minutes time limit.

3

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusion

- We intrdouced a new concept, called operator mutex, stating that a certain set of operators cannot appear together in the same plan.
- We proposed four different methods for inference of op-mutexes.
- We showed that even the simplest variants of the inference methods were able to find op-mutexes in a sizeable amount of domains.
- We combined op-mutexes with structural symmetries to prove certain sets of operators to be redundant so they can be safely removed from the planning task.