# Operator Mutexes and Symmetries for Simplifying Planning Tasks 

Daniel Fišer, Álvaro Torralba, Alexander Shleyfman<br>danfis@danfis.cz, torralba@cs.uni-saarland.de, alesh@campus.technion.ac.il

## BACKGROUND

A planning task in STRIPS: $\Pi=\langle\mathcal{F}, \mathcal{O}, I, G\rangle ; \mathcal{F}$ is a finite set of facts; state $s \subseteq \mathcal{F} ; I \subseteq \mathcal{F}$ is an initial state; $G \subseteq \mathcal{F}$ is a goal specification; $\mathcal{O}$ is a set of operators o specified by $\operatorname{pre}(o), \operatorname{del}(o), \operatorname{add}(o) \subseteq \mathcal{F}$ and cost $\mathrm{c}(o) \in \mathbb{R}_{0}^{+} ; o \in \mathcal{O}$ is applicable in $s$ iff pre $(o) \subseteq s$; o applied on $s$ yields $o[s]=$ $(s \backslash \operatorname{del}(o)) \cup \operatorname{add}(o)$.
A plan $\pi: \pi[I] \supseteq G$; an optimal plan is a plan with the minimal cost; a strongly optimal plan is an optimal plan with the minimum number of operators.

## Simplification of Planning Tasks

The goal is to remove as many operators as possible while preserving at least one strongly optimal plan.
We say that a set of operators is redundant if removing such a set preserves at least one strongly optimal plan.


## Operator Mutex

A strong operator mutex (op-mutex) $O$ is a nonempty set of operators s.t. $O \nsubseteq \pi$ for every strongly optimal plan $\pi$. Every op-mutex contains at least one redundant operator.

If op-mutexes between two sets of operators $O_{1}$ and $O_{2}$ form a complete bipartite graph, then $O_{1}$ or $O_{2}$ is redundant.


## Inference from Abstractions

Given an abstract state space $\Theta_{\Pi}^{\alpha}$ and operators $o_{1}, o_{2}, o_{1} \neq o_{2}$, if $o_{2}$ is not reachable after $o_{1}$ and $o_{1}$ is not reachable after $o_{2}$, then $\left\{o_{1}, o_{2}\right\}$ is an op-mutex.
Works with any abstraction method, e.g., Pattern Databases, Merge-and-Shrink, Cartesian Abstractions.


## Operators-as-Facts Compilation

Given the planning task $\Pi=\langle\mathcal{F}, \mathcal{O}, I, G\rangle$, the op-fact compilation is $\Pi_{\mathrm{op}}=\left\langle\mathcal{F} \cup \mathcal{F}_{\mathrm{op}}, \mathcal{O}_{\mathrm{op}}, I, G\right\rangle$, where $\mathcal{F}_{\mathrm{op}}=\left\{f_{o} \mid o \in \mathcal{O}\right\}$ and $\mathcal{O}_{\mathrm{op}}=\left\{o^{\prime} \mid o \in \mathcal{O}\right\}$ where $o^{\prime}$ equals to $o$ except for $\operatorname{add}\left(o^{\prime}\right)=\operatorname{add}(o) \cup\left\{f_{o}\right\}$.

If $F=\left\{f_{o_{1}}, \ldots, f_{o_{n}}\right\}$ is a mutex in $\Pi_{\mathrm{op}}$, then $\left\{o_{1}, \ldots, o_{n}\right\}$ is an op-mutex in $\Pi$.
Therefore we can use any method for inference of mutexes, including $\mathrm{h}^{m}$ family of heuristics.

## Pruning with Symmetries

A plan preserving symmetry of the transition system $\Theta=$ $\left\langle\mathcal{S}, L, T, s_{I}, S_{\star}\right\rangle$ is a permutation $\sigma$ of $\mathcal{S} \cup L$ mapping states to states and labels to labels s. t. $s \xrightarrow{o} s^{\prime} \in T$ iff $\sigma(s) \xrightarrow{\sigma(o)}$ $\sigma\left(s^{\prime}\right) \in T, \mathrm{c}(o)=\mathrm{c}(\sigma(o)), s \in S_{\star}$ iff $\sigma(s) \in S_{\star}$, and $\sigma\left(s_{I}\right)=s_{I}$. For every plan $\pi$ it holds that $\sigma(\pi)$ is also a plan, moreover $|\pi|=|\sigma(\pi)|$ and $\mathrm{c}(\pi)=\mathrm{c}(\sigma(\pi))$.

If $\left\{o_{1}, o_{2}\right\}$ is an op-mutex and there exists a symmetry $\sigma\left(o_{1}\right)=$ $o_{2}$, then both $\left\{o_{1}\right\}$ and $\left\{o_{2}\right\}$ are redundant.
Similarly for two sets of operators $O_{1}$ and $O_{2}$ : If $\left\{o_{1}, o_{2}\right\}$ is an op-mutex for every $o_{1} \in O_{1}$ and every $o_{2} \in O_{2}$, and there exists a symmetry $\sigma\left(O_{1}\right)=O_{2}$, then both $O_{1}$ and $O_{2}$ are redundant.


Experimental Results
Average percentage of removed operators (15 min. time limit):

| domain | baseline$\mathbf{h}^{2}+\mathbf{d e}$ | fam | $\Pi_{\mathrm{op}}^{2}$ | $\mathbf{h}^{2}+$ de with |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | fam | $\Pi_{\text {op }}^{2}$ |
| barman11 | 52.11 | 4.71 | 24.48 | +3.60 | +3.60 |
| barman14 | 53.43 | 4.94 | 25.28 | +4.01 | +4.01 |
| caldera18 | 39.34 | 0.73 | 13.25 | 0.00 | +1.45 |
| cavediving14 | 0.66 | 1.15 | 1.44 | +1.15 | +1.15 |
| childsnack14 | 0.00 | 39.58 | 39.58 | +39.58 | $+39.58$ |
| hiking14 | 0.00 | 0.07 | 0.07 | +0.07 | +0.07 |
| parcprinter08 | 70.68 | 28.61 | 28.61 | 0.00 | 0.00 |
| parcprinter11 | 70.15 | 25.75 | 25.75 | 0.00 | 0.00 |
| pathways06 | 3.94 | 2.22 | 2.26 | +3.73 | +3.73 |
| pegsol08 | 13.57 | 0.00 | 1.92 | +0.36 | +0.36 |
| pegsol11 | 9.53 | 1.08 | 3.51 | +0.20 | +0.20 |
| pipesworld06 | 11.46 | 0.04 | 4.04 | +0.04 | +0.04 |
| scanalyzer08 | 3.19 | 0.00 | 2.10 | 0.00 | 0.00 |
| scanalyzer11 | 3.17 | 0.00 | 2.12 | 0.00 | 0.00 |
| sokoban08 | 0.24 | 1.54 | 1.71 | +1.54 | +1.60 |
| sokoban11 | 0.35 | 1.86 | 2.12 | +1.86 | +1.95 |
| tpp06 | 37.96 | 1.49 | 19.97 | +1.79 | +1.79 |
| trucks06 | 75.02 | 0.00 | 0.71 | +7.87 | +7.87 |
| woodworking08 | 53.47 | 2.83 | 10.79 | +1.60 | +1.60 |
| woodworking11 | 53.72 | 2.73 | 10.17 | +1.83 | +1.83 |
| overall | 53.72 | 7.99 | 13.73 | +4.29 | +4.39 |

Fišer, D.; Torralba, Á.; and Shleyfman, A. 2019. Operator Mutexes and Symmetries for Simplifying Planning Tasks. In Proc. AAAI'19.

