OPERATOR MUTEXES AND SYMMETRIES FOR SIMPLIFYING PLANNING TASKS Daniel Fišer, Álvaro Torralba, Alexander Shleyfman danfis@danfis.cz, torralba@cs.uni-saarland.de, alesh@campus.technion.ac.il

Background

A planning task in STRIPS: $\Pi = \langle \mathcal{F}, \mathcal{O}, I, G \rangle$; \mathcal{F} is a finite set of **facts**; state $s \subseteq \mathcal{F}$; $I \subseteq \mathcal{F}$ is an **initial state**; $G \subseteq \mathcal{F}$ is a **goal specification**; \mathcal{O} is a set of **operators** o specified by $\operatorname{pre}(o), \operatorname{del}(o), \operatorname{add}(o) \subseteq \mathcal{F}$ and $\operatorname{cost} \operatorname{c}(o) \in \mathbb{R}_0^+$; $o \in \mathcal{O}$ is **applicable** in s iff $\operatorname{pre}(o) \subseteq s$; o applied on s yields o[s] = $(s \setminus \operatorname{del}(o)) \cup \operatorname{add}(o)$.

A plan π : $\pi[I] \supseteq G$; an optimal plan is a plan with the minimal cost; a strongly optimal plan is an optimal plan with the minimum number of operators.

OPERATORS-AS-FACTS COMPILATION

Given the planning task $\Pi = \langle \mathcal{F}, \mathcal{O}, I, G \rangle$, the op-fact compilation is $\Pi_{op} = \langle \mathcal{F} \cup \mathcal{F}_{op}, \mathcal{O}_{op}, I, G \rangle$, where $\mathcal{F}_{op} = \{ f_o \mid o \in \mathcal{O} \}$ and $\mathcal{O}_{op} = \{ o' \mid o \in \mathcal{O} \}$ where o' equals to o except for $\operatorname{add}(o') = \operatorname{add}(o) \cup \{ f_o \}.$

If $F = \{f_{o_1}, \ldots, f_{o_n}\}$ is a **mutex** in Π_{op} , then $\{o_1, \ldots, o_n\}$ is an **op-mutex** in Π .

Therefore we can use any method for inference of mutexes, including h^m family of heuristics.

SIMPLIFICATION OF PLANNING TASKS

The goal is to remove as many operators as possible while preserving at least one strongly optimal plan. We say that a set of operators is **redundant** if removing such a set preserves at least one strongly optimal plan.

Operator Mutex

A strong operator mutex (op-mutex) O is a nonempty set of operators s.t. $O \not\subseteq \pi$ for every strongly optimal plan π . Every op-mutex contains at least one redundant operator.

If op-mutexes between two sets of operators O_1 and O_2 form a **complete bipartite graph**, then O_1 or O_2 is **redundant**.

PRUNING WITH SYMMETRIES

A plan preserving symmetry of the transition system $\Theta = \langle S, L, T, s_I, S_\star \rangle$ is a permutation σ of $S \cup L$ mapping states to states and labels to labels s. t. $s \xrightarrow{o} s' \in T$ iff $\sigma(s) \xrightarrow{\sigma(o)} \sigma(s') \in T$, $c(o) = c(\sigma(o)), s \in S_\star$ iff $\sigma(s) \in S_\star$, and $\sigma(s_I) = s_I$. For every plan π it holds that $\sigma(\pi)$ is also a plan, moreover $|\pi| = |\sigma(\pi)|$ and $c(\pi) = c(\sigma(\pi))$.

If $\{o_1, o_2\}$ is an op-mutex and there exists a symmetry $\sigma(o_1) = o_2$, then both $\{o_1\}$ and $\{o_2\}$ are redundant. Similarly for two sets of operators O_1 and O_2 : If $\{o_1, o_2\}$ is an op-mutex for every $o_1 \in O_1$ and every $o_2 \in O_2$, and there exists a symmetry $\sigma(O_1) = O_2$, then both O_1 and O_2 are redundant.

INFERENCE FROM ABSTRACTIONS

Given an abstract state space Θ_{Π}^{α} and operators $o_1, o_2, o_1 \neq o_2$, if o_2 is not reachable after o_1 and o_1 is not reachable after o_2 , then $\{o_1, o_2\}$ is an op-mutex.

Works with any abstraction method, e.g., Pattern Databases, Merge-and-Shrink, Cartesian Abstractions.

Experimental Results

Average percentage of removed operators (15 min. time limit):					
domain	baseline			$\mathbf{h}^2 + \mathbf{de with}$	
	$\mathbf{h}^2 + \mathbf{d} \mathbf{e}$	fam	$\Pi^2_{ m op}$	fam	Π^2_{op}
barman11	52.11	4.71	24.48	+3.60	+3.60
barman14	53.43	4.94	25.28	+4.01	+4.01
caldera18	39.34	0.73	13.25	0.00	+1.45
cavediving14	0.66	1.15	1.44	+1.15	+1.15
childsnack14	0.00	39.58	39.58	+39.58	+39.58
hiking14	0.00	0.07	0.07	+0.07	+0.07
parcprinter08	70.68	28.61	28.61	0.00	0.00
parcprinter11	70.15	25.75	25.75	0.00	0.00
pathways06	3.94	2.22	2.26	+3.73	+3.73
pegsol08	13.57	0.00	1.92	+0.36	+0.36
pegsol11	9.53	1.08	3.51	+0.20	+0.20
pipesworld06	11.46	0.04	4.04	+0.04	+0.04
scanalyzer08	3.19	0.00	2.10	0.00	0.00
scanalyzer11	3.17	0.00	2.12	0.00	0.00
sokoban08	0.24	1.54	1.71	+1.54	+1.60
sokoban11	0.35	1.86	2.12	+1.86	+1.95
tpp06	37.96	1.49	19.97	+1.79	+1.79
trucks06	75.02	0.00	0.71	+7.87	+7.87
woodworking 08	53.47	2.83	10.79	+1.60	+1.60
woodworking11	53.72	2.73	10.17	+1.83	+1.83
overall	53.72	7.99	13.73	+4.29	+4.39
Fišer, D.; Torralba, Á.; and Shleyfman, A. 2019. Operator Mu-					
texes and Symmetries for Simplifying Planning Tasks. In Proc.					
AAAI'19.					